
824

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 45

Daniel Schuster
TU Dresden, Germany

István Koren
TU Dresden, Germany

Thomas Springer
TU Dresden, Germany

Dirk Hering
TU Dresden, Germany

Benjamin Söllner
TU Dresden, Germany

Markus Endler
Pontifical Catholic University of Rio de

Janeiro, Brazil

Creating Applications for Real-
Time Collaboration with XMPP
and Android on Mobile Devices

ABSTRACT

The goal of this chapter is to discuss the challenges of generic protocols and platforms for mobile col-
laboration in general and for the adoption of XMPP for mobile collaboration in particular. The chapter
will introduce the XMPP protocol family, discuss its potentials and issues for mobile collaboration, and
describe experiences with the implementation of mobile collaborative middleware and applications based
on XMPP. In particular the protocol family has been used to create a generic middleware for mobile
collaboration providing a set of generic services such as publish/subscribe, group management, and
chat functionality, as well as advanced functionality for geo-location and geo-tagging, map visualiza-
tion, and multimedia content sharing. For the implementation of our platform and applications XMPP
is used in combination with the Android platform running on the mobile devices. The authors describe
their experiences in adjusting and adopting XMPP protocol implementations based on Java on the
Android platform.

Alexander Schill
TU Dresden, Germany

DOI: 10.4018/978-1-61520-655-1.ch045

This is the authors' preprint version of the paper appearing in Handbook of Research on Mobile Software Engineering.© 2012 IGI Global

825

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

INTRODUCTION

There is already a multitude of collaborative
applications available in mobile environments.
Although they share a good amount of common
functionality, most of them are built from scratch,
or are tailored to a specific device platform using
proprietary libraries. An open and customizable
environment for mobile collaborative applications
is still missing. To set up a generic environment
for mobile collaboration support, the selection of
the right set of underlying protocols is of high im-
portance. Based on the protocols for collaboration
the foundations for interoperability, scalability,
portability and performance are created.

In earlier work (Springer et al., 2008) we
introduced the Mobilis reference architecture as
a service-oriented approach to support develop-
ers of mobile collaborative applications with a
framework covering all the different aspects and
layers of such applications. This comprises the
device operating system, basic communication
and context services, a service environment with
commonly used functionality as well as the ap-

plications at the application layer. As can be seen
in Figure 1, each of these four layers comprises
a distinguished set of individual services. The
functionality of the services at the Mobilis service
layer will be described later in this chapter.

The Mobilis reference architecture already
provides a good guideline for developers of mo-
bile collaborative applications. It served already
as a basis for the development of a set of applica-
tions adopting diverse collaboration functionality:

• MobilisFunFlags: So-called fun flags can
be tagged to locations at a map to notify
other users of the application about cool
places. Images and text notes can be at-
tached to these places.

• MobilisGuide: Tourists travelling together
can create and join closed groups and are
able to be aware of the other group mem-
bers visualized as icons on a map-based
view. They can interact by selecting icons
of group members on the map, for instance
to chat with each other or contact one an-
other directly.

Figure 1. Mobilis reference architecture

826

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

• MobilisBuddy: Users get an alert if friends
from social networks such as Facebook are
in proximity (for instance if the distance is
less than 100 meters) and can locate them
on a map or call them.

• MobilisTrader: Users of this application
offer products such as a used washing ma-
chine or mobile phone together with the
location of the product. Other users may
insert requests for products. If request and
offer matches within a pre-defined dis-
tance, both users get an alert and may con-
tact each other.

These activities have been mainly carried out
to drive the identification of appropriate services
at the Mobilis service level which can be reused
in different applications. The implementation
of the various applications also enriched our
experiences with the service platform. During
the prototype development we also tested differ-
ent target platforms. As described in (Springer
et al., 2008), we implemented the MobilisGuide
application for the three different platforms Java
ME, Java SE, and Android. Furthermore, we
tried different alternatives to realize the basic
connectivity encapsulated in the Basic Services
layer such as NaradaBrokering (Pallickara & Fox,
2003), Google App Engine (Google, 2009), and
the eXtensible Messaging and Presence Protocol
(XMPP) (XMPP, 2009).

While all these approaches remain compatible
to the Mobilis reference architecture, each of
them provides insights into different facets of the
chances and challenges of development of mobile
real-time collaboration applications. In this chapter
we focus on the experiences made with XMPP
on the Android platform as the most appropriate
approach for the realization of systems according
to the Mobilis reference architecture. We consider
XMPP as one of the key technologies because it is
a standardized, open, and widely adopted protocol
for collaborative applications in the internet. It
provides a large set of mechanisms for key col-

laboration features like group management, multi-
user chatting, publish/subscribe, and multi-media
streaming which is easily extensible by specifying
XMPP Protocol Extensions (XEPs). Moreover,
Java-based implementations are available and
are ready to use. In combination with Android,
key features of mobile collaborative applications
are easy to implement. Such features comprise
map-based awareness, exchange of location and
presence information, and content management.

In the following, we introduce the XMPP
platform as an XML-based infrastructure for
mobile collaboration and the Android technology.
While the choice of Android does not influence
the conceptual architecture for XMPP-based
mobile collaboration presented in the Concepts
and Solutions section, it introduces some specific
issues at implementation level which are discussed
afterwards. In this section, we will show more
detailed concepts, XMPP-based protocols, and
implementation issues of two selected applica-
tions (MobilisGuide and MobilisBuddy) out of
the applications mentioned above.

But before we get into details about all these
issues we want to motivate our work with a dis-
cussion about the current challenges of mobile
real-time collaboration in the following section.

BACKGROUND

Major Challenges for Protocols and
Middleware for Mobile Collaboration

Communication and collaboration are major
driving forces for people to use today’s network
infrastructures. Over the last decade, a number of
new communication and collaboration technolo-
gies, such as audio and video conferencing, VoIP,
Instant Messaging, Blogs, Wikis, application
sharing, shared editing tools, etc. have emerged
and created a heterogeneous bundle of interaction
channels to the final user.

827

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

Consequently, this “escalating variety of com-
munication devices and the ever increasing volume
of messaging activity” (Hutton, 2001) has greatly
increased the communication complexity for both
the initiator and the recipient of a communication
request, e.g., initiators have to think about the
recipient’s location and context and the appropri-
ate communication channel while recipients are
confronted by a myriad of communication devices,
addresses and services. This creates a fragmented
communication setting whose coordination is time
consuming and error prone. Moreover, due to
increased flexibility, spontaneity and asymmetry
of interactions people are potentially confronted
with a level of interaction that might exceed their
personal preferences, causing what Sørensen calls
the “interaction overload” (Sorensen et al., 2002).
In order to cope with these problems, future com-
munication and collaboration middleware will
strive towards unified communication technology
and powerful filtering mechanisms.

The confluence of several trends in the design
of portable devices, cloud computing services,
sensor technologies, geospatial information sys-
tems, and wireless networks, as well as the
emergence of new forms of end-user interactions
and visualization technologies are leveraging the
technological base for advanced real-time collabo-
ration in mobile environments. Anyway, because
of the specific characteristics of mobile devices,
wireless network technologies and the specific
requirements of mobile users, applications have
to be tailored to the special characteristics. As a
result, applications for real-time collaboration
on mobile devices face the following challenges:

Enriched Presence: An important aspect for
mobile collaboration is to increase the awareness
of collaborating parties about where the others
currently are, what they work on and how what
social context they are within. Thus, the provision-
ing of enriched presence information as well as
intuitive means for users to manage preferences
of its disclosure is of high importance. The idea
of presence information is to signal to the initiator

of a communication action the recipient’s “ability
or willingness to communicate” (de Poot et al.,
2005). In current IM tools presence information is
either manually provided by the user or deduced
by technical means, e.g., the user is not logged into
the system, or the device not connected. However,
to support interactions with mobile users it may
be useful to include also automatically sensed or
inferred presence information about the user’s
location or context, e.g., “inside car in motion”,
“in a movie hall”, “in the boss’s office” etc., as this
may also reveal the recipient’s availability to initi-
ate or continue a communication session. Thus,
if this enriched presence information is shared
with the mobile user’s interaction partners, they
may also become aware of the current interaction
restrictions of the mobile user, and may lower their
expectations of immediate reactions or responses.
In order to implement such enriched presence
information, future collaboration systems will
probably need to be integrated with middleware
for sensing, context inference and distribution.

Unified communication: According to (Hut-
ton, 2001), unified communication can be defined
as the integration of different synchronous and
asynchronous communication and collaboration
modes - preferably based on an unique and intuitive
metaphor - and aimed at reducing the fragmenta-
tion and complexity of today’s interactions. On
the other hand, powerful filtering shall enable:
(i) flexible selection of time periods, the persons
and the channels at which the user is willing to
interact, and (ii) diverting or transferring incom-
ing communication requests between channels
and devices according to a set of user-provided or
automatically learned filters or rules. Such rules
might relate time (“at office hours”), situations
(“at a meeting”, “on travel”), callers (“co-worker”,
“chief”) and interaction modes (“voice call”,
“instant messaging”).

Usability and Quality of Experience: Fea-
tures like application sharing or shared editing of
documents and other multimedia content are well
established in desktop environments. In mobile

828

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

settings, these features are desirable and helpful
as well. Due to the limitations of mobile devices
and the restricted bandwidth of wireless network
technologies, the propagation of local changes
to all collaboration partners is quite challenging.
Anyway, the user expects the same quality of
experience as provided by desktop applications.
Beyond the real-time aspect of collaboration, the
interaction of users with applications on mobile de-
vices requires interaction types and user interfaces
tailored to the characteristics of the used devices.

Web 2.0 Integration: Social contacts, mul-
timedia content and already established infra-
structures for collaboration in the Web 2.0 are
important resources for mobile collaboration.
Social networking gains increased popularity
and is the base of information about the contacts
and relations of users and thus provides extended
information about potential collaboration partners.
Moreover, platforms for sharing media content like
Picasa, Flickr or YouTube contain multimedia data
which can potentially serve as the object partners
collaborate on. An integration of these resources
provides users a seamless handover between
familiar web-based environments and mobile ap-
plications and prevents the parallel maintenance
of social contacts and content.

Configuration and Adaptation: Due to the
heterogeneity of mobile devices and wireless
network technologies a “one-size-fits-all” ap-
plication would fail to meet the challenges raised
by heterogeneity. Applications and the underly-
ing platform should be highly configurable to
the capabilities of particular mobile devices and
the available connectivity. This comprises the
consideration of particular user needs and prefer-
ences. To cope with dynamic changes of resource
availability at runtime, application functionality
and data should be adaptable taking the context
into account.

Security and Privacy: Another important
challenge is raised by the need for exploiting the
location information and extended awareness

features. At the one hand these features can sig-
nificantly improve the interaction of collaborating
parties. At the other hand, disclosure of private
information is required which could raise major
privacy concerns which could prevent users from
adopting the developed systems. Therefore, a
balance between awareness and privacy has to
be established. This implies especially to support
the user to keep control what and with whom his
or her private information is shared. While this
issue is out of scope of this chapter, the authors
refer to other research dealing with these aspects
(see Groba et al., 2007 and Franz et al., 2008).

Overview of XMPP

The Extensible Messaging and Presence Protocol
(XMPP) (XMPP, 2009) is a family of protocols
for internet-based collaborative environments and
is standardized by the Internet Engineering Task
force (IETF). It adopts a client/server approach
with multiple interconnected servers (like e-mail)
and is based on XML. A set of XEPs (XMPP Ex-
tension Protocols) provides further functionality,
e.g., presence and location exchange, publish/
subscribe, file transfer, group management and
multi-user chat. These extensions are driven and
managed by the XMPP Standards Foundation
(XSF), an open, non-profit organization as well
as a world-wide community of developers. Hav-
ing its roots in instant messaging and presence,
the XSF widened its scope towards supporting
real-time communication and collaboration on
top of XMPP. Anyway, to use these protocols
for mobile settings, they have to be adjusted to
resource constraints, limited connectivity, and
varying situations of use. Features for location
and context-awareness should be integrated as
well as adaptation concepts, new interaction
forms and collaboration services to create col-
laborative applications which are really valuable
for mobile users.

829

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

XML Stanzas

The actual information exchange in XMPP runs
on top of a TCP connection and inside an XML
stream, which is started for both directions at
the beginning of the communication, right after
the initial mechanisms for authentication and
encryption. The specific semantic transmission
units are called stanzas; thereby each of them is a
well-formed piece of XML. There are three types
of stanzas which we will depict in the following:
Message, Presence and Info/Query.

Message

The Message stanza can be regarded as a push
mechanism, whereby a user may send informa-
tion to another entity on the XMPP network. In
Instant Messaging scenarios, a message is typically
encapsulating chat data and therefore features a
body part similar to an e-mail. Moreover, mes-
sages are used for event delivery and notifications.
Therefore, the attached data is embedded into an
event tag with a custom namespace. For instance,
the publish/subscribe extensions heavily rely on
the capabilities of this stanza protocol as will be
shown later.

<message from=’ariel@island.lit/cell’

to=’prospero@island.lit’

id=’msg1’>

 <thread>Shakespeare’s Play</thread>

 <subject>The Tempest</subject>

 <body>

 That’s my noble master!

 What shall I do? Say what? What

shall I do?

 </body>

</message>

Presence

Presence data shortly includes all information
concerning the availability of a user, whether
‘online’, ‘not available’ or different, arbitrary
values. The presence mechanisms can be seen
as a simple broadcast system, through which the
presence information can be published to sub-
scribed users. The subscription itself is maintained
through entries of the roster, which is the contact
list of the particular identity. Thereby, upon each
update, the XMPP server propagates the Presence
stanza to all users that have this particular member
in their roster.

<presence from=’ariel@island.lit/

cell’to=’prospero@island.lit’

type=’available’>

 <status>Waitin’ for the noble mas-

ter</status>

 <priority>10</priority>

 <show>chat</show>

</presence>

Info/Query

The Info/Query (IQ) protocol features a stanza
model that is employed for request/response
mechanisms that involve another entity. The
four possible types are get, set, result and error.
Get and set requests have to be answered with
either a result or an error stanza with the appro-
priate identifier attribute. IQ interactions follow
a common pattern of structured data exchange;
therefore, payload is attached as a child element.
The protocol is used by the service discovery
means of XMPP; furthermore we heavily apply
it in the realization of our conceptual architecture
with XMPP. Queries are accomplished by using
the <query> tag.

830

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

<iq type=’get’from=’ariel@island.lit/

cell’to=’plays.shakespeare.lit’

id=’info1’>

 <query xmlns=’http://jabber.org/

protocol/disco#info’/>

</iq>

Extensibility

The XMPP protocol is designed to be extensible
by means of the existing stanza models. Therefore,
all enhancements are based on the three building
blocks that were mentioned before. Extensions are
published as XMPP Extension Protocols (XEP)
and run through a community-driven standardiza-
tion process that starts with an experimental ver-
sion, progresses as a working draft and is closed by
providing the final standard. Currently, numerous
XEPs exist whereof three extensions are briefly
introduced which are important for our work.

Multi-User Chat

The Multi-User Chat XEP-0045 (Saint-Andre,
2008) describes a protocol for multi-user text
chats, whereby users can exchange text messages
in the context of a room. More general, the MUC
can be seen as a means for holding particular
members together in the character of a group.
MUC features control models that allow defining
moderators and administrators to change certain
users’ rights. Additionally, Multi-User Chat rooms
may be secured by a password and also only ac-
cessible upon invitation.

Publish-Subscribe

The Publish-Subscribe extension XEP-0060 (Mil-
lard et al., 2008) is based on the publish/subscribe
or observer pattern. An interested participant
subscribes to a certain node. If an entity publishes
information to this node, the interested participants

get an update message. The extension provides
a service to create the nodes that may be used to
publish information to. Just like the Multi-User
Chat, the Publish-Subscribe extension provides
various content models and user affiliations for
controlling the access to the nodes. The possible
roles of an entity are ‘owner’, ‘publisher’ or ‘out-
cast’ (who may not access the node); by default
entities may only subscribe for notifications.
Nodes may be combined to a collection while a
collection is again a node. Information may only
be published on leaf nodes.

For our goal of creating mobile applications
in a resource-aware way, the publish/subscribe
pattern is of high importance.

<message from=’pubsub.shakespeare.

lit’ to=’francisco@denmark.lit’

id=’foo’>

 <event xmlns=’http://jabber.org/

protocol/pubsub#event’>

 <items node=’princely_musings’>

 <item id=’ae890ac52d0df67ed7cfd

f51b644e901’>

 [... ENTRY ...]

 </item>

 </items>

 </event>

</message>

Service Discovery

The Service Discovery, described in XEP-0030
(Hildebrand et al., 2008) specifies a protocol for
discovering services, their properties and features
of another XMPP entity. Beneath, supported exten-
sion protocols of the entity can be identified. The
Service Discovery uses I/Q stanzas for querying
the opponent. For example, the MUC chat exten-
sion presented above uses a service discovery
stanza for querying the server for a list of avail-
able groups. An entity may have more identities

831

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

which are exposed by the “identity” tag within the
I/Q result. The “feature” tag is used to describe
the features; it contains an attribute called “var”
whose value is a protocol namespace.

XMPP for Real-Time Collaboration

These widely available extensions as well as a
few other characteristics of XMPP make it well
suitable for real-time collaboration applications.
To underline this claim, we want to outline some
of the rationales for choosing XMPP as an infra-
structure for our mobile collaboration framework.

Session and Group Management

XMPP can easily create sessions between users
of collaboration applications and ease group man-
agement. XMPP already provides mechanisms
to login to a server and contact other users by a
world-wide unique ID (the JID). Furthermore it
supports the creation of multi-user chat rooms
through one of its extensions. Clients joined
to a chat room are able to see and contact each
other. Access restrictions can be made on group
membership.

Community Support

The XMPP Standards Foundation is a vital com-
munity that fosters the development of real-time
collaboration. Big industry players base their
real-time collaboration solutions on XMPP and
standardize them as XEPs. XMPP servers as well
as XMPP clients and XMPP client libraries are
available as free and/or open source software for
a number of platforms including Java.

Asynchronous Messages

As XMPP offers long-living client-server con-
nections, we can use XMPP to send asynchro-
nous server-client messages. Unlike traditional
client-server systems we have a need to establish

a bidirectional link to enable the server to send
messages asynchronously to the client in real-time
collaboration. Using XMPP for this purpose is very
easy as we can directly send messages to any JID.

Extensibility

XMPP offers great ways of extensibility as all info/
query messages are defined within their distinct
XML namespace. The XML namespace concept
can be used to easily define new protocols to
be transported within info/query messages. An
XMPP extension for service discovery eases the
deployment of new extensions.

Publish/Subscribe

One of the most powerful general-purpose services
for real-time collaboration is publish/subscribe. It
can be used for all kinds of awareness mechanisms
such as position updates within a group. XMPP
already offers an extension for hierarchical pub-
lish/subscribe that can be used for that purpose.

While we rely on XMPP for the protocols
between clients and server, mobile real-time
collaboration can only be realized as a whole
technology stack, taking a closer look at the cli-
ent platform. In our case we chose the Android
platform as it supports easy realization of map-
based applications, support for XMPP as well as
a comprehensive application framework.

Overview of Android

In short, Android is a software stack for mobile
devices including an operating system, a runtime
environment and key applications (see Figure 2).
The platform was introduced in November 2007
by the Open Handset Alliance (Open Handset Al-
liance, 2009). The Open Handset Alliance (OHA)
is a group of currently 47 technology companies
with the objective to “offer consumers a richer,
less expensive, and better mobile experience”
and proclaiming to “revolutionize the mobile

832

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

industry” (Open Handset Alliance, 2009). The
main driving force behind the coalition is Google
who initiated the cooperation and is responsible
for the actual Android software stack. The Open
Handset Alliance committed itself to providing
“open” solutions for mobile technology; they be-
lieve that the open nature of their products whose
architecture may be visible to everybody leads to
more innovative services and a rich portfolio of
easily operated applications.

Android as the current core product of the
Open Handset Alliance is basically a stack of a
Linux-based operating system and a software
platform designed for its extension. The Android
environment itself is bound to openness which is
characterized by the way of integrating and han-
dling additional software: Any part of the system
is replaceable, be it the home application, the
unlock screen or the web browser; there are no
privileged pieces of software. Thereby, the plat-
form significantly differs from current operating
systems for mobile devices such as the iPhone or
Symbian. In particular the approach of managed
code makes developing software for Android
easier, while Symbian developers have to manu-
ally consider memory allocation issues.

However, in this chapter the main focus
concerning Android is its core libraries and their

efficient use. Therefore, in the following, the
fundamental concepts of developing applications
for Android are discussed.

Android Architecture

The Android platform is highly based on compo-
nents and characterized by strong modularity. At
the bottom, a Linux kernel provides the essential
memory management, a network stack and a
driver model so it can be regarded as a hardware
abstraction layer for the software stacks above,
which are discussed below.

Dalvik Virtual Machine

The Dalvik Virtual Machine is the core part of
the software stack to run custom applications.
The most noteworthy issue about this runtime
component is its architecture and format. While
the programming language for developing ap-
plications is Java, Google decided explicitly not
to use a regularly available Java Virtual Machine
but an own implementation. By providing an own
implementation, Google was able to release a
Virtual Machine which is optimized for mobile
environments from scratch and therefore has low
memory footprint and minimal requirements. Un-

Figure 2. Android platform architecture

833

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

like the stack based standard Virtual Machines,
Dalvik is register based and by that achieves a
greater ahead-of-time optimization. By relying
on the underlying platform for address space
separation and threading support, Android allows
multiple Dalvik instances at once in contrast to
other platforms that operate mostly by running in
one single process.

Dalvik is not able to run bytecode produced
by standard Java compilers. Instead, the format
used is the Dalvik Execution Format (dex), which
is optimized for efficient storage and memory-
mappable execution. However, Java source code
files are first translated into Java bytecode by a
standard Java compiler, before a cross-compiler
converts the results to Dalvik bytecode. Because
of this sequence, both Google benefits of a huge
developer community and developers are able to
profit from existing development environments;
solely the cross-compiler has to be run separately.
Additionally, many libraries are available for being
employed by applications, like the Smack XMPP
library which we employed in our prototypes.

Application Framework

The Android platform is optimized for simple
reuse of components. Therefore the Application
Framework builds an abstraction layer, where ap-
plications can both publish their capabilities and
access the operations of other modules. Thereby,
the framework is responsible for enforcing secu-
rity constraints. For being able to access certain
resources, permissions have to be requested by
the application that can be granted by the user
upon installation. The Android platform is also
already provided with numerous default permis-
sions; for instance, network connection is granted
to components that applied for the “network”
permission. Additionally, for new functionalities,
permissions can be easily introduced to the system
by the means of namespaces.

Beyond, the Application Framework features
a set of APIs, for instance those responsible

for telephony, location awareness and the view
system. Finally, the Resource Manager enables
applications to access non-code resources in a
flexible way. Thereby, providing localizations and
custom views for different screen orientations is
easily affordable.

Android Applications

An application for Android runs on top of the
software stack and is interpreted by the Dalvik
Virtual Machine. It is distributed in the Android
Package format (apk) which contains all the code
and its resources like images and localization files.
Every package may combine four building blocks,
which will be depicted in the following. Finally,
all elements, the data they are able to handle and
the content published to other components are
declared in an XML-based manifest file.

Activity

Basically, an Activity can be thought of as a screen
of an application into which the particular user
interface views are embedded. Two concepts
exist for navigating between screens. First, an
activity may start another activity without any
further dependence. Second, the started activity
may explicitly be defined as sub-activity, so that a
return value is provided for using it in the asking
activity by a predefined course of action.

The actual layout of the comprised views may
be specified in the code like in common view
libraries for desktop applications such as AWT or
Swing. Additionally, a more modularized approach
is applicable, where the layout may be inflated
by declaring it in a proprietary XML format ac-
cessible by the Resource Manager.

Intents

The Intent mechanism is one of the core charac-
teristics of the Android platform (Android, 2009).
Generally, an Intent describes what an application

834

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

wants to be done by another part of the system and
therefore can be generalized as a type of Remote
Procedure Call. The data structure inherited in
form of a Java object consists of first the Action
string acting as an identifier, second the optional
data represented by a Uniform Resource Identifier
(URI) and third additional payload attached as an
extra, which can be specified in multiple formats
including strings, arrays and other serializable
objects.

The counterpart of an activity that sends an
Intent is the component able to process the request.
Therefore, an Intent Filter expressing the ability
to handle a certain action has to be supplied. Now,
whenever a component requests certain functional-
ity described by the Action, the system searches
the appropriate component that has a compatible
Intent Filter and delegates the further processing.

Besides, even navigating between screens is
done by resolving Intents at runtime. Activities
are able to reuse functionality by making Intent
requests; for instance, the web browser can be
opened at a certain page, by setting the appropri-
ate URI. Additionally, activities can be replaced
by publishing an equivalent Intent Filter. Finally,
Intents can be used as a broadcast system for
informing a range of applications about external
events. Therefore, a Broadcast Receiver has to
be implemented, not necessarily showing up a
user interface.

Service

A Service can be generalized as a long running
background thread, which runs without a user
interface. Activities can bind to a service and
manipulate it by particular interfaces provided
by the service. However, a service stays enabled
even after navigating away to a different screen,
until it gets stopped.

Content Provider

By offering a Content Provider, any application
is able to make its data accessible to other com-
ponents; the concept is very much like a database
query mechanism and is the only way to share
data across packages. Therefore, a certain set of
methods for data querying and manipulation is
provided. For instance, the Android platform al-
ready provides a number of Content Providers for
data like the contact list and the available images.

XMPP on Android

When the Open Handset Alliance released the first
version of the Android Software Development Kit
(SDK), the Android library featured a Peer-to-Peer
API that was using XMPP as transport means. The
actual XMPP implementation was accessible by
a Service and provided mechanisms for presence
and message exchange; the main application area
was described to be easy message passing between
any two devices. Therefore, a Google account
was required.

However, in the 1.0 version of the SDK, the
service was removed because of security issues, as
remote messages were transformed to a local In-
tent. Therefore, our implementation uses a custom
approach by adopting the Smack XMPP library.

CONCEPTS AND SOLUTIONS
FOR XMPP-BASED MOBILE
COLLABORATION

After introducing what XMPP and Android already
offer to realize mobile real-time collaboration
we now have a closer look at our architecture
and applications to add the still missing pieces.
Our architecture is a concretion of the Mobilis
framework shown in Figure 1.

835

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

Conceptual Architecture

The Mobilis framework was built according to
the paradigm of Service-oriented Architectures
(SOA). It offers a flexible environment of collab-
orative services that should ease the development
of mobile collaborative applications. Clients can
be such devices as smartphones, PDAs, or lap-
tops. We assume a running Internet connection,
although infrequent disconnections may occur.
A GPS receiver or other localization technique is
required to use location-based services.

The client communicates with the server using
the XMPP protocol. XMPP offers a bidirectional
XML stream between client and server and thus
enables asynchronous updates to be sent from the
server to the client as well as vice versa. The basic
protocol elements of XMPP (message, presence,
info/query) are used to realize the inter-service
protocols of our framework, while especially
the info/query primitive is very useful to realize
request-response services.

The server side has two distinct components:
the XMPP server and the Mobilis server. We as-
sume an existing XMPP server implementation
to be used as a black box. No native extension
is required as all Mobilis server components run
as XMPP clients and are thus fully supported by

each available XMPP server implementation on
the market. Even a public XMPP server such as
jabber.org can be used at the server side while an
own process at the same machine as the Mobilis
server is preferable regarding the performance
of communication. The Mobilis clients as well
as the central server components each register
themselves with a globally unique Jabber-ID (JID)
at the XMPP server. After opening bidirectional
XMPP connections to the XMPP server, all of
these entities are able to send XMPP stanzas to
each other.

As can be seen in Figure 3, we have three layers
at the server side: the Discovery at the top with
the Broker services layer below, and the Mobilis
services. While the latter can already be found in
the reference architecture in Figure 1, the broker
services and discovery layer realize the logical
component “Service Management and Broker-
age”. The basic service layer is fully replaced by
XMPP and its extensions (XEPs), which can be
viewed as individual basic services integrated
into XMPP.

The Coordinator is a singleton instance known
by the clients and is contacted by each collabora-
tive application at its first attempt to use the
Mobilis services. It redirects the clients to indi-
vidual Broker services. A Broker service receives

Figure 3. XMPP-based architecture

836

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

XMPP messages from a collaborative application
(e.g., MobilisGuide or MobilisBuddy) and pro-
cesses these requests. As each Broker service has
its own XMPP connection to the XMPP server it
can easily be run on a separate machine if this is
necessary to ensure scalability.

Each Broker service is a composite service
that uses some subordinate Mobilis services for its
functionality. As can be seen in Figure 3, Mobilis
services register themselves at Broker services
while Broker services register at the Coordinator.
This staged SOA concept takes care of the dif-
ferent requirements of collaborative applications
running inside the Mobilis environment. Some of
the Mobilis services such as the MobilisBuddy
service are application-specific while others
such as the Context Service are used by different
Broker services.

Group Management

Although in the past XMPP-based architectures
were mainly used for Instant Messaging, the pro-
tocol allows to be employed in a wide variety of
application areas, as we have shown above. For
example, the “group” metaphor is best corre-
sponded to the Multi User Chat (MUC) capabilities
of XEP-0045 (Saint-Andre, 2008). Consequently,
in our framework MUC is one of the building
blocks of mapping collaboration artifacts to the
conventions of the protocol.

The Group Management Service on device
level is tasked with handling all group membership
related matters which includes being aware of all
the existing groups at the server. That is why it is
amongst the first services to be used on client side,
that is to hand out a list of all available groups
for displaying it to the user and letting him or her
decide which one to join. To get this directory, the
Session Coordinator is asked by sending an IQ
stanza with type “get”, including a custom query
with the namespace “mobilis:iq:groups”. Similar
to the Service Discovery extension mechanism
(Hildebrand et al., 2008), the server returns a list

of items each with the name of the group and
the Jabber ID of a respective Session Agent. In
the context of the server architecture described
above, the Session Agent is implemented as a
Broker Service and always responsible for one
group at a time only.

After the user selected the appropriate group to
join, the client needs to send an IQ query with the
namespace “mobilis:iq:joingroup” to the Session
Coordinator. Explicitly the coordinator has to be
contacted, as in cases where the group reached
its capacity limit or is no longer able to accept
the particular user because of other reasons, the
coordinator may suggest alternatives. Now that
the coordinator received the request, its task is to
delegate it to the proper Session Agent. The Session
Agent henceforward knows the Jabber ID of the
user claiming for membership and is now able to
send out an invitation to the client. The invitation
is received by the Group Management Service
which hereupon accepts it and registers both the
group name and the appropriate agent’s JID into
the list containing all the group belongings.

If the desired group of the user does not yet ex-
ist, or if there are no groups at all yet managed by
a Session Agent, the user may create a new group
session. Therefore, as described in the Session
Coordinator section earlier, an IQ query stanza
with the namespace “mobilis:iq:creategroup” has
to be sent to the Session Coordinator. Thus trig-
gered, the coordinator initializes a new Session
Agent which creates a Multi User Chat room and
the associated publish-subscribe nodes. Now the
agent is able to send the group invitation which
is handled by the mobile client in the same way
as the invitation for joining a room.

Proximity-Based Services

Special attention was paid to build proximity-
based services like MobilisBuddy and Mobilis-
Trader. In the following, we outline architecture
and protocols of the service underlying Mobilis-
Buddy. As can be seen in the section “Conceptual

837

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

Architecture”, the MobilisBuddy service is the
broker service responsible to provide the social
networks-based buddy finder functionality. It uses
the following services (see Figure 4):

• Social Network Integration Service:
Aggregates and combines information
from all social networks the user is cur-
rently connected to.

• Context Service: New context informa-
tion arrives at this service. The context ser-
vice receives location updates from the cli-
ents and maintains their positions per JID.
Other Mobilis services, which are inter-
ested in incoming context information may
implement the ContextAwareness interface
and register at the context service to re-
ceive this information. An example where
this mechanism is used is the BuddyFinder
service.

• BuddyFinder Service: This service re-
quests a list of friends from the Social
Network Integration Service when it re-
ceives an incoming location update. This
list consists of friends from connected so-
cial networks who are currently also signed
on to the Mobilis platform. Afterwards, the
BuddyFinder service executes a bi-direc-
tional proximity check between the user

and their friends. A proximity event oc-
curs, when one user is inside the defined
proximity radius of a friend. In this case
the BuddyFinder service will inform the
users by sending a proximity event.

At the client side, the session service is the
central access point for XMPP connections of the
client and maintains the communication with the
MobilisBuddy service. The other services are the
counterpart of the server-side services.

In the following, we show how the proximity
updates are processed and how social networks
are integrated into MobilisBuddy.

Proximity Updates

The collaboration between clients is achieved
using the services already shown. Those services
communicate in a structured way. In particular,
the MobilisBuddy system makes use of special
XMPP data packets (Info/Query stanzas) to realize
a request-response-mechanism. We present the
realization of this proximity-based BuddyFinder
service in the following example depicted in
Figure 5.

It shows how Client1 changes his location and
automatically sends a location update (LocationIQ
SET) to the server. Using the Context Service and

Figure 4. Structure of MobilisBuddy

838

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

the Social Network Integration Service the Bud-
dyFinder service then determines that Client1 is
inside the radius of Client2. It thus sends a loca-
tion update further to Client2 which will then
show a proximity event on its screen. All issued
Location Updates are confirmed by a LocationIQ
RESULT.

Integration of Social Networks

The system allows automatic login (LoginLoop)
into various social networks using credentials
stored inside a DB4O database on the mobile
phone. This database is object oriented and opti-
mized for lowest possible memory usage. It allows
easy adding of new data structures.

The integration of information from one social
network is realized by a Mobilis Integration Ser-
vice on the server side. It manages a directory of
user IDs (related to the respective social network)
with their mapping to corresponding Mobilis
Jabber-IDs. It also maintains a list of friends for
each user. Hence, for every social network which
should be integrated, a specific Mobilis Integration

Service has to be developed. The Social Network
Integration Service aggregates all Mobilis Integra-
tion Services. For one given user, it may request
the friend lists from all connected social networks
with each friend resolved to the respective Jabber-
ID. It then returns an aggregated list to the user.

We want to outline the integration of Facebook
as a social network in detail. It is realized by the
Facebook Integration Service, which has access
to the Facebook friend list of the user. This access
is achieved by a desktop application registered at
the Facebook platform. To allow maximum se-
curity, all user data needed to log in at Facebook
is transmitted directly from the Mobilis client to
Facebook and not over the Mobilis server. This
concept of negotiating a Facebook session with
Mobilis client, server and Facebook is depicted
in Figure 6.

The client issues a connection request to the
Mobilis server which requests an auth token from
Facebook. Every request to Facebook will need
the Facebook API key and API secret stored at
the Mobilis server. The private API secret will
not be communicated to the Mobilis client

Figure 5. Location updates and proximity check

839

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

whereas API key and auth token are transmitted.
The client then logs in using the Auth Token, API
Key and the private Facebook credentials and
finally confirms a successful registration to the
Mobilis server.

For efficiency reasons the further communica-
tion with Facebook is done by the Mobilis server.
The server requests a session key from Facebook
providing the auth token and API secret. It than
has limited read access to the user account. The
user which is now logged in at Facebook has a
Facebook-specific ID, which can only be read by
the Mobilis server using the API secret and the
session key obtained during login. That way, the
server knows the Facebook-ID and the Jabber-
ID for every registered user and can perform
a mapping between both. It then requests the
user‘s friend list from Facebook. The friend list

– also consisting of Facebook-IDs – is mapped to
Jabber-IDs; only friends, which are also currently
registered to the Mobilis system, are added to the
friend list of the user.

Using this scheme it is possible to integrate
contacts from multiple social networks and thus
link the two worlds of social networks and mobile
real-time collaboration.

IMPLEMENTATION AND
EVALUATION

We implemented the architecture described in the
last Section and realized the applications Mobil-
isGuide, MobilisBuddy and MobilisTrader within
this architecture. In order to implement Android
applications it is convenient to use Google’s An-

Figure 6. Integration of Facebook contacts

840

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

droid Eclipse plug-in. We will highlight some of
the findings in the following.

XMPP Interface Implementation

A Java-based Mobilis server has been developed.
Both, Mobilis server and Mobilis client, com-
municate via XMPP which is powered by an
additional XMPP server.

Openfire has been chosen as XMPP server.
The XMPP connection on client and server side
is realized through the Java-based Smack librar-
ies. Integration of these libraries into the Android
environment proved to be uncomplicated. Only
small changes were necessary in Smack: Map-
ping XMPP messages to IQ objects was normally
achieved by code introspection. This way led to
errors on the Android device which is why explicit
IQ providers had to be implemented. An additional
library called su-smack (Su-Smack, 2009) has
been chosen as an implementation of XEP-0060
(publish-subscribe) [Xep0060] but was perceived
being immature. Overall, for the implementation of
communication via XMPP standard libraries could
be used, which are easily adaptable to Android.

Facebook Interface Implementation

On the Mobilis server the Facebook Java API
has been integrated to realize the communica-
tion between the Mobilis server and Facebook.
Facebook published the API for external access
to the social network, although it will not be de-
veloped any further by the company. Therefore,
it became open source and a community is now
responsible for maintenance. Only small changes
in the authentication process had to be applied to
use the Facebook API on the server.

On client side we did not choose to integrate
the full Facebook API to minimize load on the
client and traffic in the mobile network. Only the
transmission of login credentials to the Facebook
server gets initiated by the client for security

purposes. This is realized by the so-called Face-
bookMockLoginBrowser logging into Facebook
through a simulated HTTPS browser.

Validation

A functional test was accomplished at the Mobil-
isBuddy application prototype. Thereby, different
XMPP IQs were sent to the Mobilis system to
check the system behavior against its specification.
This black box test was performed in three steps.

At first, server and client interfaces were
tested separately. For this purpose, we manually
sent XMPP IQs to the JID of the MobilisBuddy
BrokerService and the client instance respectively,
via an XML console provided by the Miranda In-
stant Messenger. Test cases included for example
logging into social networks and updating user
location data.

The next step incorporated a typical system
test, where multiple instances of the client and
one instance for each server, namely the XMPP
and Mobilis server, were started on different
computers in the network. Changes of the client
location were simulated by the Android emulator
control integrated in Eclipse. Reactions of the
server and forwarding of proximity events were
carried out correctly. In case of many logged in
clients the number of performed matching op-
erations increased dramatically. This issue could
be addressed in future by employing XEP-0060
(publish-subscribe).

In the end, an automated Keyhole Markup Lan-
guage (KML) routing simulator was designed and
implemented, which reads a KML file describing
a path along geographical coordinates. This Java-
based simulator connects to the Mobilis server like
any other client and automatically sends location
updates according to the KML path. In summary,
this way enabled a fast and reproducible validation
of the interfaces.

841

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

DISCUSSION

Applicability of XMPP

Generally, all of our use cases of mobile col-
laboration were more or less straightforwardly
mapped to functionalities provided by the pure
XMPP protocol and its extensions. Even further
application areas or requirements could be adopted
because of the fundamental extensibility of XMPP,
which allows the usage of both request/reply and
publish/subscribe paradigms.

Regarding the currently available and standard-
ized approach of establishing an XMPP session
with a server, the first noteworthy property is the
dependence on a persisting TCP connection, which
is used for the basic streams wherein the particular
stanzas are sent. First, open network sockets are
very energy consumptive anyway because of the

constant wireless connection between the mobile
device and the base station. Second, if a network
outage occurs, the stream exchange is immediately
terminated, causing the server session to be closed.

When connecting again, the login procedure
has to be repeated. On every session establish-
ment, a verbose stream initiation process is started
that includes Transport Layer Security (TLS) and
Simple Authentication and Security Layer (SASL)
negotiations demanding an amount of handshakes.
Also resource binding and roster management
demand stanzas to be received and sent out.

Especially because of the initial support of
XMPP in the first versions of the Android stack, the
community lately became aware of the drawbacks
of the protocol used in a mobile environment.
Hence this section presents the main outcomes of
the discussion for the sake of completeness. As
most of the proposed extensions were still in an

Figure 7. Screenshot evaluation scenario

842

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

experimental or draft status at time of implementa-
tion and therefore subject to change, no reliable
libraries were available.

The first extension reviewed here is XEP-0124
Bidirectional-streams Over Synchronous HTTP
(BOSH) and introduces the idea of emulating a
bidirectional TCP stream by using a synchronous
HTTP connection without the need of polling.
Thereby, sessions may be continued after short
disconnections.

The most promising and efficient enhance-
ment, particularly in respect of network outages,
is XEP-0198 Stream management, which enables
the server to distinguish between connection er-
rors and voluntary suspends. The specification
improves network reliability by the possibility of
sending packet acknowledgements. Additionally,
by standardizing the process of stream resumption,
short network outages may be bridged without the
need of a long and verbose reconnection phase.

This small overview shows that the XMPP
community is aware of the mobility problems and
is already working on solutions. As a future work,
we plan to take part in this effort by providing
measurements of the behavior of our applications
in the case of network outages and poor Internet
connections.

Applicability of Android

The prototype application’s user interface is
mainly map based. By that, it reveals those parts
of the presented application framework, which
are mostly dependent on the propositions of the
Android stack; namely all location-based views,
services and sensors. Concerning this matter, the
built-in libraries facilitated the development in
many respects; for instance, the Location Man-
ager was used for current location data from the
GPS sensor and the Location class for simple
distance measuring. Additionally, the Map View
provided an easy customizable approach for
overlaying icons. Indeed, the convenient location
based services of the Android software stack are

a significant advantage for employing the opera-
tion system compared to other mobile platforms
available currently.

The other main concept introduced by Android
and employed by the interaction between the Ap-
plication Framework Layer and the User Interface
is the Intent mechanisms. Intents are used for
enabling multiple parts of the UI to react upon
broadcasts without prior registration. Beyond, the
broadcast approach allows other applications out-
side the scope of the framework to listen to these
intents, provided that they deal with respective
permissions. Further, common tasks like enabling
the user to call a user out of the application can
be easily allowed by using Intents.

CONCLUSION AND FUTURE WORK

In this chapter we described our experiences with
the implementation of mobile collaborative appli-
cations based on the open protocol standard XMPP.
We introduced a general reference architecture
introducing a set of Basic and Advanced (Mobilis
layer) services and described how to use these
services for implementing collaborative features
in applications on mobile devices. Especially,
we discussed the implementation of features like
interest match, social network integration, proxim-
ity support, and group management as important
aspects for mobile collaborative applications. As
an efficient platform for the implementation of the
concepts Android has been introduced and proven
as the best choice among several platforms for ap-
plication development for mobile infrastructures.

The platform described in this chapter provides
a lot of research opportunities to be tackled in
future work. The area of XMPP in mobile envi-
ronments has to be investigated in more detail.
It would especially be helpful to run large-scale
simulations or real-world experiments to test
XMPP behavior in the event of network connec-
tion loss, low data rate, or high round-trip times.
Our platform provides the possibility to run real

843

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

collaborative applications on top of XMPP and
to develop solutions for these problems.

Furthermore, the service-based approach
should be elaborated more in future work. We
envision an open XMPP-based service environ-
ment, where developers can easily publish their
services to be reused by other developers. The
service environment we presented in this paper
is a good first step in this direction. But it would
be helpful to engage more developers of real-time
collaboration applications for mobile devices in
the process. We plan to make our project open
source to foster this type of collaboration.

It was shown in the chapter how coupling
to existing social networks can be realized and
that it provides an added-value for collaborative
applications. If we think one step further in this
direction, the platform should provide coupling
to any type of Web 2.0 application such as social
networks, blogs, forums, media sharing portals or
the upcoming Google Wave to enable pervasive
collaboration regardless of the type of device cur-
rently in use. This coupling should be done in a
flexible but secure way to enhance the user base
of collaborative mobile applications but to keep
full control of what personal information to share
with whom. This will surely be one of the biggest
challenges of future pervasive collaboration.

ACKNOWLEDGMENT

The Mobilis framework was created by the co-
operating institutions TU Dresden, PUC Rio de
Janeiro, and UFMG Belo Horizonte in the project
Mobilis partially funded by the German BMBF
and the Brazilian CNPq. We want to thank all the
student developers of the prototypes as well as all
other project partners for the fruitful discussions
that led to the Mobilis architecture and the work
presented in this chapter.

REFERENCES

Android Developers. (2009, November 25).
Intents and intent filters. Retrieved from http://
developer.android.com/guide/topics/intents/
intents-filters.html

de Poot, H., Mulder, I., & Kijl, B. (2005). How do
knowledge workers cope with their everyday job?
The Electronic Journal of Virtual Organizations
and Networks, 9, 70-88. Retrieved from http://
www.ejov.org/apps/pub.asp?Q=1643

Franz, E., Groba, C., Springer, T., & Bergmann,
M. (2008). A comprehensive approach for context-
dependent privacy management. Proceedings of
the Third International Conference on Availability,
Reliability and Security (ARES 2008), Barcelona.
doi:10.1109/ARES.2008.184

Google, Inc. (2009, November 25). Google app
engine – Google code. Retrieved from http://code.
google.com/intl/en/appengine/

Groba, C., Groß, S., & Springer, T. (2007).
Context-dependent access control for contextual
information. Proceedings of the The Second In-
ternational Conference on Availability, Reliability
and Security, (ARES 2007), (pp. 155-161). doi:
10.1109/ARES.2007.61

Hildebrand, J., Millard, P., Eatmon, R., & Saint-
Andre, P. (2008). XEP-0030: Service discovery.
Retrieved November 25, 2009, from http://xmpp.
org/extensions/xep-0030.html

Hutton, J. (2001). Unified communications - A
potential cure for communications overload, (p.
50). CMA Management, October 2001. Retrieved
November 25, 2009, from http://www.highbeam.
com/doc/1G1-78974004.html

844

Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices

Millard, P., Saint-Andre, P., & Meijer, R. (2008).
XEP-0060: Publish-subscribe. Retrieved Novem-
ber 25, 2009, from http://xmpp.org/extensions/
xep-0060.html

Open Handset Alliance. (2009, November 25).
Open handset alliance website. Retrieved from
http://www.openhandsetalliance.com/

Pallickara, S., & Fox, G. (2003). NaradaBroker-
ing: A distributed middleware framework and
architecture for enabling durable peer-to-peer
grids. In M. Endler (Ed.), Proceedings of the ACM/
IFIP/USENIX 2003 international Conference on
Middleware (Rio de Janeiro, Brazil, June 16 - 20,
2003) Middleware Conference, (pp. 41-61). New
York, NY: Springer-Verlag.

Saint-Andre, P. (2008). XEP-0045: Multi-user
chat. Retrieved November 25, 2009, from http://
xmpp.org/extensions/xep-0045.html

Sørensen, C., Mathiassen, L., & Kakihara, M.
(2002). Mobile services: Functional diversity
and overload. Proceedings of New Perspectives
on 21st-Century Communications, Budapest,
Hungary, 2002, (pp. 1-12).

Springer, T., Schuster, D., Braun, I., Janeiro, J.,
Endler, M., & Loureiro, A. A. (2008). A flexible
architecture for mobile collaboration services.
In Proceedings of the ACM/IFIP/USENIX Mid-
dleware ‘08 Conference Companion (Leuven,
Belgium, December 01 - 05, 2008), Companion
‘08, (pp. 118-120). New York, NY: ACM. doi:
10.1145/1462735.1462770

Su-Smack. (2009, November 25). Su-smack
website. Retrieved from http://static.devel.it.su.
se/su-smack/

XMPP. (2009, November 25). Website of the
XMPP Standards Foundation. Retrieved from
http://xmpp.org/

KEY TERMS AND DEFINITIONS

Android: Mobile operating system running
on a Linux kernel. Android is maintained by the
Open Handset Alliance led by Google.

Mobile Collaborative Applications: Col-
laborative applications are pieces of software to
help people engaged in common task to achieve
their goals. These applications are also called
groupware while we prefer the term collaborative
application or collaboration applications. The
word “mobile” refers to such applications used on
mobile devices such as mobile phones or PDAs.
While notebooks may also be considered mobile
devices, we focus on resource-restricted devices
like mobile phones in this chapter.

Proximity-Based Services: Subclass of
location-based services, i.e., services accessible
with mobile devices through a mobile network
making use of the geographical position of the
device, especially the geographical proximity of
two or more devices.

Service Environment: Logical architecture
comprising client and server components (ser-
vices) including standard interfaces and protocols
as well as mechanisms for registering and finding
services and their properties.

Social Network: Web 2.0 application building
online communities of people who share interests
and/or activities.

XEP: XMPP Enhancement Proposals are
specifications for extensions of XMPP written
in the same format like the XMPP core standards
but not standardized within the IETF. The XEPs
are reviewed by the XMPP Standards Foundation
(XSF) and published on its website.

XMPP: The eXtensible Messaging and Pres-
ence Protocol is a family of XML-based network
protocols for open real-time communication and
collaboration standardized by the IETF and further
developed by the XMPP Standards Foundation
(XSF).

	Volume 1
	Title
	Copyright Page
	Editorial Advisory Board
	Library of Congress
	Table of Contents
	Detailed Table of Contents
	Forward
	Preface
	Acknowledgement
	Section 1
	A Client/Server Architecture for Augmented Assembly on Mobile Phones
	Mobile Tourist Applications
	Ubiquitous Computing
	Requirements and Design Architectures of Sensor Service Portals (SSPs) in Ubiquitous Pervasive Environments
	Modeling Context-Aware Distributed Event-Based Systems
	Model-Driven Development of Mobile Information Systems
	Experience with Automatic Product Derivation of Mobile Applications Using Model-Driven Techniques
	Model-Driven Service Creation for a Telecom Service Platform
	Delivering SMS-Based Mobile Services Using SOA
	Language Engineering for Mobile Software
	Efficient Utilization of Patterns in Mobile Application Development
	Experiences with Requirements Model Reuse
	Separation of Concerns in Mobile Hypermedia
	User-Centered Design of Mobile Geo-Applications
	Section 2
	Mobile Applications Programming Platforms and Development Tools
	A Natural Language Based Portal for Multiple Mobile Services
	A Middleware Architecture for Developing Mobile Applications
	Recommending Mechanisms for Modularizing Mobile Software Variabilities
	Fragmentation of Mobile Applications
	LOCALE
	An Adaptive Reasoning and Learning Framework for Mobile Cognitive Radio Systems
	From the Lab to the Factory Floor
	Modulation Recognition for Software Defined Radio Signal

	Volume 2
	Section 3
	Requirements Specification as Basis for Mobile Software Quality Assurance
	Context-Aware Privacy and Sharing Control in Collaborative Mobile Applications
	Formal Approach to Ensuring Interoperability of Mobile Agents
	Location-Awareness with Action Systems
	Knowledge Transactions in Mobile Environments
	Designing Mobile Aspect-Oriented Software Architectures with Ambients
	Process Algebras for Locality
	Aspect-Oriented Self-Configuring P2P Networking in Mobile Environments
	Section 4
	Mobile Interaction in Real Augmented Environments
	An Industrial Environment Augmented Reality System
	Context-Aware Systems
	Developing Context-Aware Personal Smart Spaces
	New Trends in Semantic-Based Location and Context-Aware Adaptation for Mobile Web Applications Development
	Quality of Context and Mobile Systems
	Multiple Multimodal Mobile Devices
	Mobile Software Agents for Mobile Applications
	Dynamic Content Adaptation in Mobile Applications Driven by Intentional Multi-Agent Systems
	Developing Map-Based and Location-Aware Collaborative Applications for Mobile Users
	Nikko
	Client-Side Processing for Sensor Web
	Spatial Subscriptions in Distributed Event-Based Systems
	Creating Applications for Real-Time Collaboration with XMPP and Android on Mobile Devices
	A Mobile Fleet Application Case Study Using SyD Middleware
	Implementing Participatory Sensing in Environmental Mobile Applications
	Multi-Platform Bluetooth Remote Control
	Compilation of References
	About the Contributors
	Index

