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Abstract—Communication with smart objects currently only
works in isolated, sometimes even proprietary islands. This lack
of interoperability limits the value of smart objects connected to
the Internet of Things (IoT). We propose to use the eXtensible
Messaging and Presence Protocol (XMPP) to connect IoT islands.
XMPP is inherently federated, secure, globally scalable and
designed for collaboration. We use XMPP Multi-User Chat
(MUC) to build a secure and accessible platform for sensor data
exchange between organizations. We demonstrate a scenario of
three distributed and interconnected XMPP-driven sites, whereas
different client types access sensor data from all sites. Our
evaluation results confirm that the architectural pattern presented
in this work can easily be used in any XMPP-based system
without the need to enhance or to extend the standards.

Keywords—XMPP; Internet of Things; Federation.

I. INTRODUCTION

The value of the Internet of Things (IoT) will only grow
with the number of devices able to communicate with each
other. According to Metcalfe’s law, the value of a network is
proportional to the square of the number of connected devices.

Unfortunately, a real Internet of Things does not exist yet.
Many smart objects still ship with proprietary smartphone
or tablet apps. This strategy creates thousands of isolated
smart object islands. Furthermore, this ”one-app-per-object”
approach [1] does not scale with the number of devices one
single user interacts with.

Integrating diverse device types into a comprehensive net-
work of smart objects thus remains a grand challenge. With
particular regard to interoperability, a true IoT must allow users
to access smart objects from any vendor with their mobile
devices from a possible different vendor without considering
how interconnection and communication works.

The World Wide Web often comes into mind as an analogy.
Accessing websites with the HTTP protocol is simple and
efficient, but it only works if the device hosting the website is
registered in the DNS. Such registration requires administrative
effort. Thus, an interoperability solution for smart objects has
to support easy and decentralized object discovery and secure
information access and control for objects by end-users. Last
but not least, end users and developers should be enabled to
interact with this IoT using arbitrary, well-established front-
end technologies like Web applications or simple apps.

We employ the eXtensible Messaging and Presence Pro-
tocol (XMPP) to realize the listed requirements. XMPP was

explicitly designed as a federated platform for different types
of authenticated entities (end-users, automated agents, etc.).
Each entity can own an arbitrary number of resources (e.g.,
devices, smart objects). XMPP has native support for entity
discovery as well as real-time communication and presence
between entities and resources. It is the only open standards
family available today that offers inherent and extensible sup-
port for global-scale communication among different entities.

This work proposes a simple, light-weight approach. An
XMPP Multi-User Chatroom (MUC) serves as an efficient
metaphor to model a smart object or a place in the real world,
where sensors are present and push information or receive
commands. XMPP MUCs are ready-to-use, as they support
discovery and fine-grained access control. Federated access is
simple and can be restricted to certain domains.

The remainder is structured as follows. In Section II, we
state the problem definition. Existing solutions are summarized
in Sections III and IV, respectively. Our solution approach to
use XMPP MUCs is introduced in Section V. In Section VI, we
demonstrate the feasibility of our approach with the ACDSense
scenario, where three formerly independent sites are integrated
into a federated sensor network. First evaluation results for
the example scenario and our approach are presented in
Section VII. We conclude our work in Section VIII.

II. PROBLEM DEFINITION

The problem definition seems to be quite simple: Every
device in the IoT should be able to discover and securely access
every other device to retrieve information and send commands.
The device owner should be in full control of who is accessing
his devices. However, to the best of our knowledge, there is
currently no work solving this problem completely.

First, we have to differentiate types of devices and their
communication patterns as shown in Figure 1.

Three main communication patterns need to be supported:

Level 1: Any UI device is able to access information collected
by cloud services from smart objects
The first level seems to be easily solvable by adding REST-like
APIs to current cloud services. Fine-grained access control is
possible, but has to be repeatedly set up for every provider
of cloud-controlled smart objects. The information flow is n :
1 : m. An arbitrary number of devices is able to access the
information using an intermediate node (the cloud service).
Federation can be added as an extension (Level 1+), if cloud
services are able to talk to each other using similar APIs.
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Fig. 1. Types of devices and communication patterns

Level 2: Any UI device is able to access smart objects directly
The second level calls for easy discovery mechanisms, like
showing all smart objects in a room or house. Access control
is harder to achieve here, but still bound to a user. Com-
munication flow is 1 : n. Multiple UI devices may access a
smart object simultaneously. Inter-domain communication is
depicted as Level 2+ in Figure 1. This is harder to achieve than
Level 1+, because device discovery, actual communication and
access control must work in a federated fashion.

Level 3: Smart objects are able to identify and communicate
with each other to coordinate
Level 3 discovery is similar to Level 2 discovery. However,
access control is more complex, because this level loses the
user metaphor. Smart objects can be both attached to a user as
well as simply attached to a room or larger movable objects.
Information flow can upgrade to n : m; i.e., each object
can possibly send individual messages to each other object
belonging to the same group (place). Again, the inter-domain
variant is called Level 3+.

Regarding the communication patterns, we typically expect
a manageable amount of small messages to be exchanged
at the last mile, while the flow of sensor data can grow to
large streams between communication domains. We argue that
XMPP is suitable to support all of the above patterns, which
we will elaborate in the following sections.

III. XMPP AND THE IOT

A. Introducing XMPP

Originally designed as an Instant Messaging protocol,
XMPP inherits the extensible properties of XML, the message
format used to transport diverse types of small messages
(stanzas) between arbitrary entities in near real-time. Messages
are sent via an XMPP server to so-called JIDs. A Bare JID
usually represents a user (e.g., user@mydomain.org), while
a Full JID represents a resource owned by the user (e.g.,
user@mydomain.org/phone).

Messages may be sent either to a concrete resource (using
the Full JID) or to a user (via the Bare JID). In the latter case,
the actual receiving resource is determined by priorities which
can be set by sending presence notifications.

Like e-mail, XMPP is designed as a federated system.
Usually, there is one XMPP server per organization as well

as some independent servers which offer free or paid use of
their services for private persons. These servers interconnect
via DNS to relay messages to the target domain.

More information on XMPP can be found in [2] and
at the website xmpp.org. An active community constantly
extends the capabilities of XMPP and provides free server,
library, and client implementations for a large number of
platforms. Official extensions are specified and managed by the
XMPP Standards Foundation (XSF). These extensions enable
additional functionalities like multi-user chat, file sharing, and
serverless messaging. The full list of official extensions is
available at xmpp.org/extensions.

B. IoT-related Activities

Using XMPP for IoT scenarios is part of ongoing spec-
ification activities. Current approaches can be split in two
opposed strategies: (i) integrate smart objects with XMPP-
enabled gateways and (ii) directly deploy XMPP on resource-
constrained devices.

For (i), works like [3]–[5] use the XMPP Publish-Subscribe
extension in a mediated way: non-constrained devices (e.g.,
desktop, smartphone, netbook) act as gateways, translating
sensor-specific data into XML messages, while the smart
object itself is not directly connected to the XMPP network.

[3] covers context management for sensors and introduces
an XML privacy scheme to protect sensor data in XMPP
networks. Gateways are here used to connect sensor devices.
Sensor Andrew [5] is a large-scale framework to deploy
sensors across Carnegie Mellon University and to prototype
scalable applications. [4] integrates sensor data from Android
smartphones directly in an XMPP network by deploying a
smartphone-based XMPP client and by coupling XMPP and
the Java-based OSGi framework to realize context-aware data
processing in industrial M2M scenarios.

In addition, dedicated XMPP extensions for IoT scenarios
are currently being developed by Peter Waher [6]. They focus
on large-scale M2M communication for industrial environ-
ments. Sensors are accessed using a Concentrator node that
acts as an XMPP client. Fine-grained access control can be
reached by involving a so-called Provisioning Server as part
of the XMPP network.

Approaches of (i) break the Internet’s end-to-end principle
by relying on gateways / protocol translators. In contrast,
approaches from (ii) focus on a direct deployment of XMPP
on constrained devices and the adaption of XMPP for use in
scenarios with resource-constrained devices.

A first step in this direction is μXMPP [7], which demon-
strates that XMPP can run on constrained devices. μXMPP
includes a reduced set of XMPP core functionalities and en-
ables a direct communication between smart objects and non-
constrained devices. Chatty Things [8] improves μXMPP with:
an API for developing IoT applications, support for essential
extensions, optimizations for small RAM/ROM footprints, and
a reduction of XMPP message exchange. The custom XMPP
extension Temporary Subscription for Presence (TSP) [8]
reduces the number and size of messages for joining a MUC
room. The constrained object joining the MUC room only
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announces its presence and does not receive MUC presence
in return.

Chatty Things first introduced the idea to send sensor data
to an XMPP MUC room. This inherently simple concept is
powerful enough to be extended for federated and discoverable
smart object communication, as shown in the next section.

C. Discussion

XMPP has already been recognized as a viable solution
by some works from the IoT domain. Communication can be
either direct, via the Publish-Subscribe extension or via MUC.
Refer to Table I for a comparison of these approaches.

TABLE I. COMPARISON OF XMPP-BASED APPROACHES

Direct PubSub MUC

1:1 communication X X X

1:n communication – X X

Topics (n:1) O X X

Tree of topics – O –

Discovery O X X

Presence O – X

Access control O O X

– no support O limited support X good support

While all approaches handle the basic case of 1:1 com-
munication quite well, only PubSub and MUC are able to
distribute data from smart objects to multiple receivers simul-
taneously. In the IoT, there is often a need to bundle multiple
smart objects as a group or topic, e.g., all sensors belonging
to a house. This can be done with PubSub and MUC, as
multiple entities may publish on a PubSub node and MUC
room, respectively. Grouping can be achieved via Concentrator
nodes for the direct approach, but this only creates a static
mapping of smart objects to a JID.

If the number of topics grows, there will be a need to
cluster topics in a hierarchy. While this should theoretically be
a pro argument for the PubSub approach, current implementa-
tions often omit the hierarchy aspect of the Publish-Subscribe
extension. Till this day, we did not find a working combination
of XMPP client library and XMPP server supporting hierar-
chical PubSub.

Before the actual information can be accessed, smart ob-
jects need to be discovered. For the direct approach this is
only possible if the smart objects are using the same XMPP
account as the requesting client. This may be the case for some
objects in the smart home environment, which are tied to one
common user account. PubSub and MUC both use the Service
Discovery extension of XMPP which enables to retrieve a list
of topics (disco#items) as well as to request details of
every item (disco#info).

Online presence information is helpful to check the avail-
ability of smart objects. With the direct approach this is again
only viable for smart objects using the same user account.
Otherwise, the user needs to do a presence handshake with
every object he is interested in. PubSub fails completely at
this issue, as publishers and subscribers are decoupled. MUC
offers the best presence support, as smart objects joining a
MUC publish directed presence to this MUC, which can be
consumed by every participant joining the MUC. Thus, smart
object presence can be observed as easy as joining a MUC
and leaving it after the observation has finished.

A last, important point is securing access to information
from smart objects. For the direct case, the smart objects can
use black- and white-listing on the server to filter communica-
tion. But these requests can only be issued by the XMPP user
(i.e., the smart object) itself, making it hard to manage multiple
objects. PubSub should offer fine-grained access control for
topics, but again this aspect of the protocol is not implemented
by most client libraries and server implementations (as of April
2014). The MUC approach offers the best support for access
control. A role concept enables the management of black and
white lists for multiple topics (i.e., MUC rooms) at once.

These arguments accounted for our decision to leverage the
MUC-based approach for our IoT scenarios. We also compared
it to other non-XMPP approaches, as described in the following
section.

IV. NON-XMPP APPROACHES

XMPP is only one of the main competitors to act as the
discovery and access protocol for the IoT. Other approaches
are REST-like communication (HTTP/CoAP) and MQTT.

The intuitive approach for accessing sensors is to use
REST-like HTTP GET requests and return the value of the
sensor in JSON or pure text format. While this is one of
the most prominent approaches, the smart objects requires
a mini Web server or a proxy performing this operation on
their behalf. A new TCP connection needs to be established
and closed for each request. Compared to this, XMPP only
requires the node to run a client library opening an outgoing
TCP connection to its XMPP server. This connection is reused
for many requests and responses. Even Web applications can
follow this paradigm with XMPP over WebSockets.

The Constrained Application Protocol (CoAP) [9], [10]
defines a UDP-based access protocol for smart objects, in
particular for constrained devices with approximately 10 KB
of RAM and roughly 100 KB of code space (class-1 devices).
It uses HTTP-like pull semantics to access information on
smart objects, but request and responses are transported using
a compact encoding on top of UDP. Thus, smart objects do
neither need to manage TCP connections nor an HTTP stack.
Push semantics can be enabled by setting the Observer option,
where the smart object will continue sending results to the
requester as soon as the requested value changes. Discovery
of sensors has to be done in a Web-like way by requesting a
well-known URI (GET /.well-known/core), offering a
collection of links.

While both HTTP and CoAP offer cross-domain access
based on the DNS, access control has to be handled by other
means. This approach is thus only practical to realize Level 1+
communication (compare Section II). For Level 2+ or Level
3+, access control is hard to achieve, as it has to be done
for each UI device or even smart object individually. XMPP
offers the unique advantage that all users are authenticated at
their XMPP domain, and that access control can be done per
domain or with additional black/white lists for individual users
(authenticating all devices owned by the user). Furthermore,
discovery of resources is more flexible with our MUC-based
approach. The smart object itself is able to modify the regis-
tered information by managing the MUC room. Regarding the
focus on constrained devices, Chatty Things has proven that
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Fig. 2. Concept based on XMPP Multi-User Chat (MUC)

a “lightweight” XMPP is even able to run on class-1 devices.
Finally, one advantage of our approach compared to CoAP is
the simple support of multiple users accessing the same sensor
information. The sensor only needs to push this information
to the MUC room once, regardless of the number of receivers.

MQTT [11] uses a publish-subscribe architecture. Clients
connect via TCP to a broker and subscribe to topics. A
hierarchical topic scheme is used. Sensors may be modeled as
topics and thus distribute their data. MQTT uses an efficient
binary message format and offers different message delivery
primitives (at-most-once, at-least-once, exactly-once). A mod-
ified version designed for wireless sensor networks is available
as MQTT-SN [12]. It uses UDP instead of TCP and shorter
topic identifiers to optimize MQTT for constrained devices.

While MQTT is the most efficient approach especially in
one-to-many scenarios, it lacks federation capabilities. MQTT
and other PubSub architectures are most useful in isolated
application scenarios, where one central message broker is
sufficient and federation not required.

V. THE MUC-BASED APPROACH

Our approach of MUC-based sensor discovery, control and
data retrieval is depicted in Figure 2. To the extent of our
knowledge, it is the best fit to realize federated communication
between smart objects and UI devices, i.e., the communication
levels 2 and 2+ from Figure 1. To realize this approach, the
XMPP server and client libraries need to support XMPP Multi-
User Chat (XEP-0045) and Service Discovery (XEP-0030).
This is the case for most servers and libraries in productive
use. Each MUC room defines a description field, qualifying it
as sensor MUC room.

A. Discovery and Communication

A smart object announces itself by sending presence to a
MUC room. If this room does not exist yet, it is created by
the MUC extension automatically. Multiple smart objects may
join the same room. It is thus possible to create a room that
represents a place or another real-world object with multiple
sensors or smart objects.

The owner (usually the smart object that created it) can
change description and permissions of the MUC room. The
description is later used by other objects to discover the sensor
MUC room. Permissions are used to restrict access to the
MUC room on a coarse-grained (password protection) or a
fine-grained basis (black-/white-listing).

Finally, the smart object sends its sensor data to the MUC
room within the body of a message stanza. We propose to

use JavaScript Object Notation (JSON) as the data format. It
enables easy parsing, simple representation of data structures,
and integration with Web technologies. Mixing up XML and
JSON seems to be strange in the first place, but it is quite
reasonable. The XML markup works as the data envelope,
while the more native data format contains the actual payload.

To discover sensor MUC rooms at an XMPP server, an
XMPP entity is first required to log into its XMPP server. It
is then able to retrieve a list of MUC rooms at the XMPP
server using the disco#items request of XEP-0030. It has
to check whether the description of a MUC room marks it as a
sensor MUC room and finally join the rooms of interest. The
entity will then not only receive actual sensor data, but also a
configurable window of historical sensor data.

The discovery described above not only works for the
XMPP server the user is connected to, but also in a federated
manner on remote XMPP servers. The same holds true for
joining MUC rooms. Thus, discovery and actual access of
sensor data across organizational borders is possible.

B. Sensor Metadata & Data

Given its ease-of-use and widespread adoption in Web
applications, we employ all descriptions of sensor metadata
and data in JSON. We propose the following JSON sensor
metadata format, specified as a sensor MUC room description:

{"sensormuc":
{"type":"MULTI",
"format":"full",
"location":
{"countryCode":"US",
"cityName":"Pioneer Village",
"latitude":40.98520,
"longitude":-111.9020}}}

If a MUC room carries a JSON string in its description
field with key = "sensormuc", it should be identified as a
MUC room carrying sensor data. The type "MULTI" in the
example states a MUC room that represents multiple sensors.
In this case, different sensors pushing values to the MUC room
have to provide their type in each sensor event.

Sensor data is specified as a JSON string in the context
of a sensor event. The format is based on the Android API
for sensor events. For the sake of simplicity, we prefer such a
format over more complex formats like SensorML.

{"sensorevent":
{"type":"AMBIENT_TEMPERATURE",
"values":[20.34432],
"timestamp":"2013-09-18T18:31:38+01:00"}}
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In cases of one sensor per MUC room, we collect all sensor
metadata in the MUC room description and use a short format
for the actual sensor data. This short format is especially useful
in scenarios with resource constrained smart objects.

VI. THE ACDSENSE SCENARIO

To evaluate the feasibility and federation capabilities of the
solution described above, we developed ACDSense, an inter-
organizational sensor network scenario spanning our three
universities: RWTH Aachen University, TU Dresden, and BTU
Cottbus-Senftenberg.

Each of our sites contributed heterogeneous sensor imple-
mentations, publishing mostly weather-related data. Addition-
ally, each of our sites employed different types of client ap-
plications for accessing and controlling sensors, ranging from
standard general-purpose XMPP clients over custom mobile
apps to Web-based widget dashboards. Each organization runs
its own XMPP server in federation with the other institutions’
XMPP servers, as shown in Figure 3. Hence, any client can
use any server as an entry point to the federated network and
access sensors connected to any other server. The following
subsections provide detailed descriptions of sensor and client
implementations for each site.

A. High-Performance Commodity Sensors and Widget Dash-
board in Aachen

The sensor part at RWTH Aachen university represents
a class of low-cost high-performance commodity hardware
sensors. It is implemented using a Raspberry Pi with a USB-
connected thermometer. WLAN and XMPP connections to a

sensor MUC room are established automatically at boot time
via a configurable Python script. Once connected, the script
periodically fetches data from the thermometer and pushes
sensor event payloads (cf. Section V-B) into the MUC room.
In addition, users can adjust the sensor’s update frequency by
sending remote command messages to the sensor MUC room.

The client part at RWTH Aachen university represents a
class of Web-based clients, accessible from regular modern
Web browsers. For ACDSense, we created a sample collab-
orative Web application, providing a well-defined context for
multiple users to monitor and control sensors together. The ap-
plication is built on top of the ROLE SDK (cf. [13]), providing
so called spaces as collaboration contexts. It uses XMPP over
WebSocket as a modern transport from Web applications. To
support the ACDSense scenario, we built a space populated
with three widgets (cf. Figure 3, lower left screenshot). The
Sensor List widget displays the results of a sensor discovery
across the ACDSense federated network and provides buttons
for connecting to individual sensors. The Sensor Meter widget
visualizes live sensor data from all connected sensors in real-
time. A Sensor Map widget visualizes sensor geo-locations
available from sensor metadata. The built-in chat space is also
powered by XMPP.

B. Mobilis-based Sensing Apps in Dresden

The sensor part in Dresden consists of a Sensor Data Gen-
erator. It processes historical hurricane weather data and sends
it to multiple sensor MUC rooms. One MUC room represents
one weather station equipped with sensors for measuring wind,
humidity, ambient temperature, and others.
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The client part in Dresden represents a class of native
mobile apps for accessing and controlling sensors via XMPP.
We developed a native iOS sensing app on top of the Mobilis
framework [14] (cf. lower middle of Figure 3). Mobilis enables
to write compounds of native mobile apps and cloud services
which are dynamically deployed in a runtime environment. The
communication is based on XMPP and thus compatible with
other XMPP-based approaches. The sensing app allows to do
basic sensor discovery, browse sensor domains, select sensors
of interest within each domain, and visualize sensor data.

C. Integration of Constrained Devices in Cottbus

The sensor part in Cottbus represents a class of heav-
ily constrained sensor devices. In particular, we show the
integration of constrained devices using the Chatty Things
approach with the XMPP extension Temporary Subscription
for Presence (TSP) in our architecture. Zolertia Z1 nodes,
running a minimized and modular XMPP stack on top of the
Contiki OS, push their sensor data directly to MUC rooms of
an XMPP server.

The Chatty Things use TSP to avoid presence overhead
when joining a MUC room. To further reduce XMPP message
size, we avoid repeated transmission of redundant data, such as
sensor metadata. The topic of the sensor MUC room represents
the type of the sensor, the first message after joining the
MUC room transmits geo-location and the unit of the sensed
data. All other messages only transmit the sensed value in a
short format. Users can interactively adjust the sensor’s update
frequency by sending remote command messages to the sensor
MUC room.

The client part at BTU Cottbus-Senftenberg demonstrates
the feasibility of using standard XMPP client software for
accessing sensors. The rightmost lower screenshot in Figure 3
shows the output of a sensor MUC room in an ordinary XMPP
client like Adium/Pidgin. The information is human-readable.
Thus, no additional software is necessary to monitor Chatty
Things sensors, if the JIDs of all sensor MUC rooms are known
in advance.

D. Administrative Challenges

The ACDSense scenario was realized within four weeks
and then tested and evaluated over several weeks. Before
we present detailed evaluation results in Section VII, we
share concrete experiences, mostly related to administrative
challenges while setting up federation among our three sites.

First, each of our XMPP servers had to be configured
for accepting server-to-server connections. As these connec-
tions run over port 5269, and not the standard XMPP
client port (5222), new firewall filters had to be added
at all three sites. In addition, a second DNS SRV record
(_xmpp-server._tcp) per XMPP server is needed in
theory. In practice, most self-hosted XMPP servers use their
URL as their XMPP service domain. In this case, an ordinary
DNS A or AAAA record is sufficient for clients/servers to
connect to the XMPP server, which worked for our setup.
Another challenge emerged from the use of the XMPP Multi-
User Chat extension. An XMPP server can host multiple MUC
services, each of them accessible via an own sub-domain
like conference.xmpp-server.org. As administrators

normally forbid to resolve all sub-domains with a single DNS
A record, the MUC sub-domain needs to be added as a DNS
alias as well. If it is not possible to modify DNS entries for
administrative reasons, a simple workaround is to modify the
etc/hosts file of each machine taking part in the federation.
This worked well for some servers in our small federation
scenario described above. Large scenarios certainly require
DNS entries for each server and MUC sub-domain. Fixing
these administrative issues and sticking to the agreed sensor
metadata and data formats (cf. Section V-B) was sufficient
to enable inter-organizational sharing of sensor data. Each of
our three clients, connected to its home server, was able to
discover, access and control sensors running at all three sites.

VII. EVALUATION

To further demonstrate the efficiency, in particular the scal-
ability, of our approach, we developed an evaluation infrastruc-
ture capable of running different types of experiments. These
were mainly targeted at the comparison of individual properties
of the MUC-based transport, such as message delivery time,
message overheads and message throughput. In the following
sections, we describe our evaluation environment and present
the results of our experiments.

A. Evaluation Environment

We used three physical machines to run the tests and
collect test results. Node 1 and Node 2 each run an OpenFire
XMPP server and are coupled using XMPP federation. Node
3 emulates a large number of data senders (i.e., sensors) and
heterogenous receivers (i.e., clients).

Sensor data exchanged between the nodes consisted of
weather data from [15]. We selected the 1000 most frequent
senders out of a total set of 9,503 weather stations. The dataset
produced by these stations comprises a time period of 10 days
in August 2005 (during Hurricane Katrina).

The Java-based Data Player creates and joins a MUC for
each weather station and posts sensor data with configurable
time acceleration. The Data Receiver discovers and joins
MUCs to receive sensor data. The Smack XMPP library was
used for both the senders and Java receivers while we also
did tests with Web-based receivers using the JavaScript library
strophe.js. Both Data Player and Data Receiver were executed
on the same machine to avoid time synchronization problems
in the collected measurement data. We used a time acceleration
factor of 500 to speed up the tests and to stress-test the
infrastructure.

For each message on both sender and receiver side, we
recorded send/receive times, overall message and sensor data
payload sizes as well as sender/receiver JIDs. By default, each
message contained a unique message identifier, thus allowing
to join data for sent and received messages. We also measured
the time to discover large numbers of sensors across the
federated environment.

To create reproducible results, we did the tests in this
section with a setup of two federated servers in the same
LAN. We double-checked part of these results with tests on a
true federated setup between Aachen and Dresden. Apart from
approximately 20 ms RTT added to message delivery time the
results are the same for the LAN setup.
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Fig. 4. Message delivery time for varying topologies and numbers of sensors
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B. Message delivery time

In the first experiment, we connected a single receiver
to every MUC that receives the posted sensor data of each
emulated weather station. For 10 senders, the XMPP Server
had to handle 20 sessions: 10 for the senders and 10 for the
receivers.

We compared message delivery time using 10, 100 and
1000 senders, respectively (compare Figure 4). Message la-
tency only slightly increases with the load on the server (i.e.,
messages per second). Even with more than 4,000 messages
per second, the delivery time is 11.1 ms if using one XMPP
server. The federation overhead when using two servers is only
about 10 ms and does not increase with the load.

In a second experiment, we evaluated the effect of the
number of receivers per MUC. We ran a series of tests with the
most frequent sender station posting to only one MUC, which
is then joined by 10, 100, and 1000 clients, respectively. The
total throughput of messages for the 1:1000 case is even higher
(11,644 messages per second) than for the 1000:1 case (4,322
messages). This is due to the fact, that only the weather station
with the most frequent events was used in the test.

The increase in message delivery time is again proportional
to the total number of messages sent per second (cf. Figure 5).
Moreover, the numbers at certain throughput levels are compa-
rable to the first experiment. It hence does not matter whether
the number of senders or the number of receivers is increased.
Message delivery time grows in both cases.

As the average message size was 385 Bytes, we transported
an impressive workload of 42 MBit/s upstream and 4.1 MBit/s
downstream in the 1:1000 test case. Our Intel i7 Quadcore
XMPP server ran at 12-18% CPU load in this test. This proves
the scalability of the XMPP MUC approach.
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Fig. 7. Message delivery time as well as overhead for native and Web-based
XMPP transports

C. Discovery

In experiment 1, we also measured the time to retrieve the
descriptions of all weather stations (worst case performance).
Unfortunately, the time needed to fetch the descriptions grows
linearly with the number of MUCs (cf. Figure 6). This is due
to the fact that the description can only be determined if an
individual disco#info request is issued for each MUC. This
results in 1,000 request/response cycles for the 1000:1 case.

While the time for a single XMPP server is still acceptable
(1.3 s), the federated discovery is only usable up to 100 rooms,
as there is already 5 s to wait for the result. A discovery request
with 1000 weather stations in the federated case takes 50 s and
thus becomes unusable.

However, if only a list of MUCs and their JIDs is needed,
a single disco#items query is sufficient. Regardless of the
number of senders, this resulted in a discovery time of around
80 ms, both for single server and federated servers.

D. Native vs. Web-based XMPP

In another experiment, we compared the performance of
native XMPP (baseline) vs. Web transports to a local server.
For the latter, we compared both XMPP over WebSocket and
XMPP over BOSH. We ran the test described in experiment 1
and measured the average message delivery times and message
overhead. The results are shown in Figure 7: message delivery
time of the WebSocket connection increased to 73.7 ms and
even 554.9 ms for BOSH, compared to 3.7 ms over the native
TCP connection. The overhead for the WebSocket remained
at the 73% baseline, while it increased to 90.8% for BOSH.
BOSH uses costly long-polling HTTP connections for message
delivery, hence explaining its high overhead. In contrast, the
overhead of WebSocket is equal to native XMPP connections.
Average message delivery times differ in orders of magnitude.
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For both Web transports, message delivery time remains rel-
atively high, since the messages take another indirection over
the browser’s JavaScript API.

Given its low overhead and acceptable message delivery
time, XMPP over WebSocket replaces XMPP over BOSH to
realize an effective and efficient bridge between XMPP-based
sensor networks and related Web applications. The XMPP
community is currently active in stabilizing respective standard
drafts. As WebSocket support will probably not be realized
in legacy browsers, XMPP over BOSH remains as a fallback
solution.

E. Experiments with Short Format

In order to assess the performance of our approach in con-
strained environments, especially in 6LoWPANs, we created a
second experimental setup. Our performance test reconstructed
a test case (e.g., temperature reception) of RESTful Web
services [16, Sec.6.3]: a one-hop network (IPv6) with Zolertia
Z1 wireless sensor nodes. One node runs the 6LoWPAN border
router and is connected via the Serial Line Internet Protocol
(SLIP) to a computer.

The Chatty Thing pushes its sensed temperature data to the
MUC room with the sensor-specific topic ’temp’. For CoAP,
the provided REST example (e.g., get ’hello world’)
of Contiki OS was used. The completion time (summarized in
Table II) for the REST-based approaches was measured as the
time between requesting a service and getting its sensed data.

The measurements of XMPP also include the performance
for presence status and one-to-one chat message exchanges, to
give a general performance overview of typically used XML
message stanzas. The very low message size of CoAP is a clear
advantage in 6LoWPANs, but XMPP can achieve a comparable
performance when the XML message fits in a single TCP/IP
packet (i.e., max. 48 Bytes). XMPP can thus be used more
efficiently if XML data compression implementations like EXI
are available for constrained devices.

TABLE II. REST VS XMPP IN 6LOWPANS

Approach Request Size Response Size Completion Time

RESTful Web Services 85 Bytes 141 Bytes 440 ms

CoAP 15 Bytes 19 Bytes 54 ms

XMPP (Group Chat) - 144 Bytes 200 ms

XMPP (One-to-One Chat) - 96 Bytes 122 ms

XMPP (Presence) - 35 Bytes 38 ms

VIII. CONCLUSIONS

We demonstrated a concept, use case and evaluation of
federated data sharing in the Internet of Things using XMPP.
Our MUC-based concept complements other approaches and
is especially easy to implement and deploy.

As the evaluation results show, XMPP MUC as a trans-
port layer is able to deliver messages within milliseconds in
single server and federated settings. With the Chatty Things
extensions, it also offers competitive performance on resource
constrained devices. Web-based applications are also able to
receive the data in reasonable time (especially with XMPP over
WebSockets). Other built-in features like presence and access
control offer additional value for real-world deployments.

The main drawback still lies in the performance of the dis-
covery, which does not scale well, especially in the federated
case. Additional mechanisms are needed, which are currently
elaborated in the XMPP community (refer to [17]) with the
help of one of the authors of this paper.
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