
Preparing Research Projects for Sustainable
Software Engineering in Society

Dominik Renzel, István Koren, Ralf Klamma, Matthias Jarke
RWTH Aachen University

Advanced Community Information Systems (ACIS)
Informatik 5, Ahornstr. 55, 52056 Aachen, Germany

Email: renzel,koren,klamma,jarke@dbis.rwth-aachen.de

Abstract—With the pervasive need for digitization in mod-
ern information society, publicly funded research projects in-
creasingly focus on engineering digital approaches to manage
societal processes. Such projects inherently face the challenge of
establishing a sustainable software engineering culture. A major
challenge thereby is that project consortia need to establish a
distributed developer community that effectively and resource-
efficiently aligns development efforts with the goals and needs
of complex societal constellations beyond project lifetime. In this
paper we extract empirical evidence from longitudinal studies
in two large-scale research projects to outline typical challenges
in such problem contexts and to develop an open source soft-
ware engineering methodology for research projects, including
supportive infrastructure and social instruments of community
building and awareness. We thus contribute a comprehensive
strategy preparing collaborative research projects for sustainable
societal software engineering.

I. INTRODUCTION

With the pervasive need for digitization in information
societies, we find strong competition of commercial as well
as publicly funded research projects increasingly focusing
on engineering digital approaches to manage all kinds of
societal processes. Indeed, many research challenges (e.g.
fusion research, etc.) are so complex that they can only be
addressed at a societal level [1].

On the part of industry, a vast majority of CEOs (89%)
acknowledges that commitment to sustainability translates into
real impact in their industry [2], but still faces challenges
towards achieving [3]. For the software industry, sustainability
is at most a non-functional requirement costly to fulfill and
thus only pursued if the company has sufficiently stable stance
to argue for it or the customer explicitly requires it [3].
Major software companies have installed own R&D strategies
and business models to collaborate on new interoperability
standards, to gain trust in their infrastructure and to attract de-
velopers to use their platforms and APIs for building, growing,
and sustaining ecosystems of mobile/Web applications.

For academia and SMEs, the situation is different. Ma-
jor funding agencies like the European Commission state
sustainability of project results beyond project lifetime as
fundamental requirement for overall success. Public sector
funding agencies are strongly aware of societal challenges, in
particular sustainability, in much larger diversity than in profit-
oriented enterprises. Over the past eight years, the European

Commission has spent over 50 billion Euro on funding collab-
orative research and innovation in ICT under the umbrella of
the Seventh Framework Programme for Research (FP7) [4].
Likewise, the NSF requested almost one billion USD for
2014 in the Computer & Information Science & Engineering
(CISE) program alone [5]. These figures demonstrate that
massive amounts of public funds are spent on research projects
with IT focus. One key activity in such projects is software
engineering for different purposes, e.g. producing prototypes
for innovative IT applications or provision of large-scale
computing infrastructure. Especially larger integrating projects
produce technological artifacts such as infrastructures, frame-
works, and specifications as basis for growing ecosystems
of derivative software products. The European Commission
requires research plan proposals to explicitly address sus-
tainability as goal in terms of how well project results and
development processes are prepared to survive beyond project
termination. With the end of project funding, this goal becomes
challenging, as consortia split up and partners turn their ways
in terms of new emerging goals and funding opportunities.
Achieving such sustainability must thus be clearly addressed
during project lifetime.

Especially in the ICT calls, Open Source Software (OSS)
is seen as central means for sustainable software develop-
ment. Clearly, this stance focuses on societal and economic
concerns as the primary purposes of public research projects.
While the OSS movement started as a niche phenomenon,
it is now omnipresent in virtually all sectors of modern
information societies. The European Commission [6] and the
US government [7] issue strategies to make reasonable use
of and actively contribute resources to OSS development.
Collaborative research projects are an important source of
such contributions, as their organization strongly resembles the
inner workings of OSS communities. “With a large number of
projects delivering Open Source software we should not miss
the opportunity to share experience and know-how on [...] how
to make project results sustainable over time [...]” [8].

However, commercial software providers face a certain
inability to practice sustainability design within software engi-
neering due to the lack of methodology and tool support [3]. In
this paper, we argue that this finding is even more true for re-
search projects due to their different structure, motivations, and
goals. In particular, we emphasize the importance of preparing

This is the authors' preprint version of the paper appearing in Proc. of 39th International Conference on Software Engineering (ICSE'17), Buenos Aires, Argentina, May 20-28, 2017. 



projects for sustainability of project results and software
engineering processes. Research projects can reach this goal
with the help of an agile methodology inspired by established
DevOps and OSS approaches, supported by a combination of
technical and social instruments to establish, maintain, adapt,
and sustain software engineering beyond project lifetime. We
observe that DevOps methodologies generally do not reflect
contributions of end-user communities, although these play
important roles in many phases of both commercial and
OSS development. Thus, engineering software for societies
must explicitly include the role of end-users in participatory
processes from planning over design to evaluation to gain
their trust and confidence in the built software artifacts. Our
work is thus mostly located in the intersection of social and
technical aspects regarding sustainable software engineering
in societies (cf. Karlskrona Manifesto [9]). To preserve and
spread effective practices in this context we studied challenges
and successful solutions in several research projects over
the last years and synthesized our findings in a software
engineering methodology and related infrastructure designed
for reuse in other research projects with comparable scope.

The rest of this paper is structured as follows. In Section II
we discuss existing literature on distributed software engi-
neering in research and development contexts. In Section III
we derive specific challenges in research projects from two
case studies of EU-funded large-scale integrating projects.
In Section IV we present our DevOpsUse methodology and
infrastructure for sustainable societal software engineering. In
Section V we report the key lessons learned from the empirical
evidence in our case studies. In Section VI, we conclude this
paper with a discussion of limitations and future measures.

II. RELATED WORK

Research projects in science and engineering have recently
become a topic of rising interest in software engineering
research [10]. The use of sound software engineering methods
and principles is pivotal in producing software for scientific
and innovative purposes. Yet, academic staff involved in
software development often lack training in software engi-
neering [11]. Software engineering in research projects comes
with inherently different characteristics compared to commer-
cial IT projects [12]. With special regard to sustainability,
the majority of projects differ in terms of goals, nature of
delivered products and internal processes. Although companies
reflect an understanding of sustainability in quality criteria
such as usability, maintainability, or agility to update [3],
top level goals of software project management still boil
down to staying within time and budget, to achieve customer
satisfaction, and finally to increase sales and profit. In con-
trast, research projects strive for scientific success in terms
of reputation and impact in prestigious publications. Often,
software is merely considered a research instrument, while
novelty, feasibility of research methods and results as proof of
concept are more important. Thus, software artifacts designed
in research projects frequently stay prototypes, regarded as
boundary objects of innovative technology and scenarios [13].

Such prototypes require sustained development to reach com-
mercial maturity, as they usually lack commercial success
characteristics. Although research projects typically follow
agreed scientific methodologies, each is unique since it aims to
explore and discover unknown territory starting from the state-
of-the-art. Such “once-only projects” expose a significant risk
of failing [14]. To mitigate this risk, research projects must
establish effective and efficient software engineering practice
among multiple distributed developer teams early to prepare
for quality and sustainability of both development process and
products. Extensive research into distributed teams in R&D
projects has revealed the concrete need for supporting method-
ologies and infrastructures [15]. Software engineering must
be coordinated with various instruments creating sustained
consortium and stakeholder involvement, including decision
making, development, and communication [16].

III. EMPIRICAL CONTEXTS AND CHALLENGES

In this section, we discuss two longitudinal case studies in
large-scale integrated research projects funded by the Euro-
pean Commission. Both projects set ambitious development
goals towards societal transformation and involved broad con-
sortia of partners with different backgrounds and motivations.
All projects developed enabling technologies in terms of
frameworks, infrastructures, or technology standards as basis
for growing ecosystems of societal software. With societal
software we define software that pays as much attention to
the process of creating the software product as to the software
product itself in analogy to participatory negotiation and
design processes in society, e.g. large infrastructure projects.

Project ROLE

Responsive Open Learning Environments (ROLE) was a
EU FP7 large-scale integrating project from 2009 to 2013,
involving sixteen partners from Europe and China with a
budget of 8.5 Mio Euro. The objective of the ROLE project
was to develop a responsive and open widget-based platform
for self-regulated informal learning in personal learning envi-
ronments (PLE). With the ROLE SDK, the project delivered
a reference implementation of the platform including widget
developer tools. End-users with corporate and institutional
learning background in five testbeds were involved in require-
ments engineering (RE), co-design and evaluation activities.

During the first months, the consortium produced a technol-
ogy survey as dedicated deliverable with the goal to outline the
current state-of-the-art in personal learning technology popular
in the testbeds. Finding a common baseline among many
diverse technologies required intense partner negotiation. In
parallel, partners conducted face-to-face workshops and focus-
group interviews as part of RE. Resulting non-digital arti-
facts were digitized and documented in a project deliverable.
Already in early stages, face-to-face RE activities turned
out as excessively resource-intensive and thus unscalable for
frequent reiteration. The consortium thus started research into
remote end-user participation in a negotiation-driven social
requirements engineering process [17].



With the beginning of development, the technical lead
established open biweekly developer meetings, gathering rep-
resentatives from all technical partners. This developer task
force (DTF) enjoyed considerable freedom in short-term devel-
opment. Development goals were governed by the input from
requirements engineers. However, with each partner reporting
progress and issues, meetings became increasingly longer. The
DTF addressed this challenge with issue-centric meetings,
supported by an issue tracker. Every agenda item had to be
reflected by a corresponding issue. Discussion items were
immediately documented in the respective issues. Meeting
time could be drastically reduced with all issues documented
traceably. However, cases of disagreement and long-term deci-
sions were escalated to project management. An intermediate
senior technical board would have been preferable.

From the start, the consortium agreed on producing OSS.
The DTF thus discussed OSS licensing early in the first year
with the goal to agree on one license model fitting all part-
ners’ exploitation strategies. Legal departments of the partners
then issued recommendations, which effectively rendered a
single-license model impossible. The consortium then had
to spend considerable resources in reaching consensus on a
set of compatible licenses. Additionally, the DTF agreed on
SourceForge as public platform for code hosting and revision
control. Retrospectively, SourceForge turned out as wrong
choice for two reasons. First, missing support for managing
smaller repositories under the same organization quickly led
to a monolithic code base of unhandleable size, including
code for the core platform, services, widgets, and experiments.
Second, GitHub quickly outgrew and displaced SourceForge,
becoming the de-facto standard platform for highly visible
OSS projects. Later migration to GitHub was not successful
due to resource shortage for a major cleanup.

In first development stages, individual member institutions
of the DTF developed prototypes of a widget-based PLE
infrastructure or learning widgets in isolation, however still
adhering to the same open standard widget specifications.
In later stages, the need for providing the ROLE SDK as
bundled product raised the issue of integrating the many
components. The DTF addressed this challenge with a Hudson
(now Jenkins) continuous integration (CI) system for nightly
builds and automated testing. With the availability of a CI
system, the project experienced a boost in convergence.

In later project stages with tangible results available, DTF
members targeted external OSS conventions such as FOSDEM
or Apache meetings to disseminate results to wider audiences,
including other research projects. Additionally, the DTF orga-
nized own coding competitions and hackathons [18], piloting
with internal developers only, and later addressing external
developers. Such events were door openers to establishing
valuable contacts across projects, sharing common best prac-
tice, raising awareness, and sustaining project results as con-
tributions to other OSS projects. The interaction with external
parties should start with the availability of development results.

Very late into the project, the consortium deployed ROLE
Sandbox (http://role-sandbox.eu) as ready-to-use sandbox for

widget developers. With the original intent to analyze system
uptake and quality, the maintainer integrated the MobSOS
framework for community success awareness [19] includ-
ing means for automated log data collection, enrichment,
visual analytics, and community success modeling. Deeper
data analysis soon revealed usage patterns hinting to use
by other stakeholder groups such as teachers, learners, and
researchers. Already the analysis of automatically collected
and enriched log data provided valuable insights with respect
to learning analytics far beyond the original intent. This low-
effort automated approach enabled ROLE Sandbox to become
the first testbed for learning analytics on widget-based PLE on
a world-wide scale [20]. From a learning analytics perspective,
different views on the same data would have provided dif-
ferent project stakeholder groups with relevant input already
during project lifetime: researchers for quantifying empirical
findings, developers for monitoring widget quality and uptake,
maintainers for surveilling platform status, teachers for staying
aware of learning indicators, etc.

Project Learning Layers

Learning Layers was an EU FP7 large-scale integrating
project running from 2012 to 2016, involving 18 partners
with 13 Mio Euro budget. Core work packages included R&D
activities towards innovative software for scaling informal
workplace learning and their evaluation. The objective of the
project was to develop a set of modular and flexible techno-
logical layers for supporting workplace practices in companies
that unlock peer production and scaffold networked learning.
This objective was addressed with various mobile apps and
social software services on top of a scalable, light-weight
infrastructure that allows for swift federated deployment in
highly distributed and dynamic settings. Since the start of
the project, end-users from vocational education and training
(VET) backgrounds in healthcare and construction were deeply
involved in system co-design, and continue so even beyond
project lifetime. This project adopted and extended several
instruments previously used in ROLE. These included the
DTF, a decision making body, an OSS strategy, and a tool-
supported social requirements engineering process.

During the first project months, the consortium produced
a technology survey. Unlike in ROLE, the purpose was not
only to survey existing architectures, frameworks and tools
supporting deployment of workplace learning solutions, but
also to assess software engineering tools in use across partner
institutions. Since the first-year objective was a fast, small-
scale deployment of an initial infrastructure, the technology
collection mainly focused on architecture solutions. From
all surveyed technologies the consortium selected four ar-
chitectural models and seven products for closer scrutiny,
documented in an internal report.

Requirements engineering took place in parallel to the
survey. In absence of dedicated tools, requirements were first
elicited during face-to-face activities and from non-digital
artifacts from end-user partners (e.g. storyboards), introducing
the same overhead as in ROLE. The consortium thus deployed



Requirements Bazaar [17] as tool for social requirements
engineering. The knowledge of workflows and needs in SME
contexts in the pilot clusters was initially captured in con-
text cards, which depicted a typical work situation and the
related challenges. These context cards resulted from visits of
technical project staff to the application partners during so-
called application partner days, one of the measures taken for
ensuring stakeholder engagement. For instance, a context card
for a welding station might pose challenges such as, “How can
welders document their work?” or “How can welders receive
help from others while welding?” These challenges were
(among other activities) fed into an early project-wide design
conference. First use cases, storyboards and design ideas were
generated during this event. Co-design teams involving differ-
ent kinds of stakeholders (researchers, developers, end-users)
emerged around design ideas and then continued to work on
use cases, storyboards, wireframes, and prototypes, using agile
development methods. The artifacts created and refined during
these activities were mined for requirements as first activity
of the project’s DTF. The requirements were then transferred
to Requirements Bazaar to be negotiated with typical social
operations such as voting, amending and commenting. The
result was a prioritized list of requirements based on votings,
accessible and traceable for all project members.

Like in ROLE, the DTF was installed early and with
considerable freedom in short-term development. To sim-
plify coordination, members were holding bi-weekly online
meetings to discuss current issues like new developments,
peer reviews of code, bugs or integration tasks. As decision
making body for cases of disagreement or long-term decisions,
the consortium established an architecture board early in
the project, consisting of representatives from all technical
partners and from all design teams.

While individual institutions functioned as product owners
of the software they produced, the main task of the DTF was
to develop a common infrastructure and reasonable interfacing
between components for seamless integration into an overall
platform. The DTF also had an active role in the establish-
ment and maintenance of a Layers Open Developer Library
(ODevL), including tools and best practice documentation for
requirements engineering, code hosting, revision control, issue
tracking, continuous integration, containerization, continuous
deployment, monitoring, and analytics.

Webinars about both used and produced tools were an
essential part of the ODevL. The screencasts were produced
by senior DTF members to showcase important functionalities.
Developers and project stakeholders were the first target audi-
ence. However, the publication of our webinar videos received
on large video hosting platforms such as youTube and vimeo
resulted in many views beyond project scope and thus served
dissemination purposes. With the choice of GitHub as code
hosting platform, the project avoided all the problems earlier
experienced in ROLE. Most importantly, every component was
maintained in an own repo, but under a common Learning
Layers organization. Building upon earlier experience from
the licensing discussions in ROLE, the consortium agreed on

a freedom of choice among a set of compatible permissive
OSS licenses like BSD or Apache. However, in later stages,
commercial partners made use of their right to switch from
permissive OSS to closed source, proprietary commercial
licensing without further notice. Such steps effectively turned
out to be detrimental to the initial goals of working open
source, as awareness of constant updates from project partners
and funding agencies was hampered.

As additional stakeholder engagement activity, the DTF
organized annual hackathons [18] where internal and exter-
nal developers were invited to design and code new ideas
for learning tools using project relevant APIs and tools.
The hackathons usually started with tutorials about specific
technologies and development methods like Scrum, to get
inexperienced developers on board quickly. Closed face-to-
face meetings among DTF members integrated into hackathon
agendas significantly helped to push forward integration tasks.
During one such hackathon, the DTF collaboratively learned
how to integrate their heterogeneous prototypes to use OpenID
Connect as single sign-on solution. Besides having face-to-
face meetings and discussing ongoing issues, the goal of these
development events was to embrace external open source com-
munities by the means of hands-on technology presentations
and coding contests. Such face-to-face meetings also helped
to push forward integration tasks.

As means of supporting different forms of project eval-
uation, i.e. summative vs. formative vs. developmental, as
well as qualitative vs. quantitative, the project consortium
pursued different learning analytics approaches. Learning from
the earlier positive experience with ROLE Sandbox, the DTF
designed the project’s technical infrastructure in a way that
all requests issued to any of the hosted REST APIs were
automatically monitored and enriched by MobSOS [19]. Ad-
ditional MobSOS services to collect and analyze end-user
feedback and to create visual analytics dashboards over all
collected data became core part of the infrastructure and
were clearly announced as common good to be shared among
consortium members. However, despite its early availability
and several training initiatives, the monitoring and analytics
subsystem of the common infrastructure was used scarcely.
Retrospectively, one of the key reasons for this shortcoming
was, that evaluation was not planned as explicit, dedicated
task, but rather as implicit and orthogonal to the project’s
work package structure with several negative consequences.
First, only few technical partners responsible for the backend
infrastructure provided the necessary tools, data and expertise
to make use and sense of them on a project-wide scale, but
lacked direct contact to end-users. Second, individual appli-
cation partners with direct contact to relatively few end-users
rather refrained to traditional qualitative research methods and
independent, yet highly redundant efforts into instrumenting
their applications to produce high-level monitoring data an-
alyzed with proprietary tools. In the end, we learned that
research projects can considerably save resources by planning
for a dedicated task or even work package on a common
evaluation strategy, supported by a common monitoring and



TABLE I
COMMON SOFTWARE ENGINEERING CHALLENGES IN RESEARCH PROJECTS

Early Decisions Architectural decisions with considerable scope need to be made early in the project, as it is well known that early mistakes
in a project are the costliest [21]. These decisions should also include reflections on work package and task structure.

Short Cycles In the time frame of an R&D project, development cycles must be kept short, and initial architectures and prototypes must
be provided early in the project to allow for frequent refinement loops driven by research and end-user involvement.

Sustained Impact Deployed solutions have to scale both horizontally and vertically, as project outcomes should be exploited and sustained
beyond the project’s funding period. Typically, exploitability and impact of project results are key performance indicators
for funding agencies, although market-readiness of ICT research project outcomes is often limited [22]).

Distributed Community The initial community is a union of individuals affiliated to different partners. It needs to act as seed for a growing and
flourishing wider community involving external members in a limited amount of time.

Support Infrastructure The development process and environment, including procedures and tools for source code management, issue tracking,
software branding, and similar, need to be defined, implemented and maintained. Eventual licensing and maintenance costs
and efforts may not be underestimated.

Licensing An OSS strategy usually helps sustain and transfer project results into practice and is thus interesting for funding agencies [8].
By definition, any OSS must ship with an OSS license. In large project consortia, agreement on one license for all developed
components is hard to reach. The use of third-party OSS and differing exploitation goals among partners impose the use of
different, however compatible licenses.

Stakeholder Engagement Societal software projects inherently require instruments to achieve wide coverage of stakeholder engagement. Such
instruments thus need to be as inclusive and supportive as possible even for non-technical audiences.

Baseline In research projects, the state of the art builds the baseline for all activities. “Quick & dirty” approaches ignoring existing
knowledge may thwart the cutting-edge research ambitions of the project. However, software engineering processes need
to be flexible to understand and adapt to emergent change, resulting from the complex and never ending interplay of
people influencing technology and vice versa, as we find it in socio-technical systems and as it is described by ICT-related
adaptations of structuration theory [23].

Unknown Territory Research outcomes inherently remain unspecified beforehand, while the research methodology leading to those expected
outcomes must be well-defined. This poses a concrete challenge, as software engineering activities need to synchronize with
primary research activities.

Success Awareness Any software artifact developed within research projects requires rigorous evaluation with respect to success as complex
construct combining quality and impact as they are perceived by different relevant stakeholder groups. With respect to
sustainability and given that success itself is a highly dynamic and context-dependent construct, success awareness must be
conceptualized as result of ongoing long-term developmental evaluation even beyond project lifetime [9], [19].

Decision Making Although research institutions collaborate in projects with legally binding contracts and agreed work plans, all of them have
different motivations, internal agendas and working processes to be aligned with the overall project agenda. This diversity
often poses an obstacle to efficient decision making.

analytics infrastructure trusted by all evaluation partners. Such
a dedicated task must allocate sufficient own resources, such
that partners can reach agreement and achieve an appropriate
adaptation of the analytics infrastructure to the particular
evaluation interests and needs of individual partners as well
as the project as a whole.

As result of ongoing reflection in ROLE, Layers, and several
smaller research projects, we identified a set of challenges
common in societal software engineering-related research
projects (cf. Table I). In the following, this collection of com-
mon challenges serves as basis for developing a sustainable
societal software engineering methodology and infrastructure
suitable for research projects.

IV. DEVOPSUSE FOR RESEARCH PROJECTS

Meeting the challenges extracted in the previous section
requires a sound methodological basis and technical sup-
port infrastructure to sustainably design and guide software
engineering processes within and beyond the boundaries of
research projects. The approach we present here builds on
three fundamental observations. First, in academic settings,
both development and operations are carried out by the same
researchers, in contrast to distinct departments in company
contexts. Second, despite its obvious importance for tasks
such as requirements engineering, testing, and evaluation, end-
user participation remains unreflected or implicit, while its

importance is gaining wider attention in both industrial and
academic research settings. Thus, end-user participation from
different community contexts must be made more explicit
in societal software engineering to gain best possible cov-
erage and awareness for the plethora of diverse stakeholder
groups involved in societal processes. Third, the wider OSS
community has continuously evolved software engineering
best practice, well-known and accepted among professional
developers across projects and problem domains. Further-
more, providers of professional software engineering tools
are supportive to the Open Source philosophy by granting
free licensing to OSS projects. As such, OSS development is
inherently well-suited for application in research projects, in
particular with respect to continued development after project
end, either in follow-up projects, dedicated OSS communities,
or commercial exploitation.

The left part of Figure 1 shows our DevOpsUse method-
ology as an extension of the abstract DevOps [24] life cycle
by an additional end-user cycle. The innermost circle reflects
the standard DevOps life cycle as baseline. DevOps essen-
tially postulates a vivid collaboration culture among software
development (DEV) and operations (OPS), supported by a
highly integrated and automated tool infrastructure. We use
culture here as a synonym for practices and not in the sense
of Hofstede [25].



Project Lifetime
Code Hosting &
Revision Control

Continuous
Integration

Continuous
Delivery

Social
Requirements
Engineering

Monitoring &
Analytics

Continuous
Deployment

GitHub

DEV

USE

OPS

Jenkins

DEV

OPS

Docker

DEV

OPS

Requirements
Bazaar

DEV

MobSOS

USE

OPS

DEV

Layers Box

USE

OPS

DEV

Issue
Tracking

OPS

JIRA

DEV

Manual Automated

Develop & Test

Release & Monitor

DEV

OPS

USE

IDEAS &
NEEDS

CO-DESIGN

BETA
TESTING

CONTEXT
PRACTICE

AWARENESS

FEEDBACK
DEVELOP

TEST

DEPLOYDEPLOY

MONITOR

Fig. 1. DevOpsUse life cycle (left) and tool support instrumentation roadmap (right)

In order to appropriately reflect the importance of end-user
contributions to societal software engineering, we add a USE
ring in parallel, illustrating end-user activity throughout differ-
ent phases of the DevOps cycle. Particularly in early project
phases, potential end-users of societal software are invaluable
resources for generating and negotiating innovative ideas and
determining relevant requirements. However, often the access
to end-users is hard to achieve for project developers. In the
same vein, getting end-users to participate in co-designing and
alpha/beta testing long before any official release is desirable,
but challenging. Deployment is partially guided by end-users’
requirements with respect to their contexts. In particular,
end-users help decide in which premises societal software
is deployed (i.e. public cloud data centers, organizational
cloud installations, private clouds, or hybrid forms [26]). Once
deployed, even in early and immaterial prototype phases, end-
users carry out their practice by using the software. With their
use, end-users generate traces feedback on quality and impact
that can be monitored, analyzed, visualized in aggregated
forms suitable to create awareness [19] for all stakeholders,
again including end-users. The cycle closes with the repeated
negotiation of requirements as part of social requirements
engineering [17] to refine existing features or find new ideas.

Technical DevOpsUse Instruments
Inline with standard DevOps methodologies, our

DevOpsUse methodology is accompanied by an integrated
infrastructure of supportive services and tools from best
practice in OSS development. In addition to the DevOps goal
of achieving the highest level of integration and automation
for such an infrastructure, our DevOpsUse infrastructure
emphasizes the participation and awareness of end-user
communities across projects. The result is a combination of
state-of-the-art technical DevOps instruments commonly used
in OSS development projects, augmented with a few, yet

highly influential instruments dedicated to the inclusion of
end-user communities without strong technical background.
In the right part of Figure 1, we provide an overview of
the proposed DevOpsUse tool set. Following the observation
that DevOpsUse infrastructures are built incrementally, we
provide this overview in a roadmap fashion. For each tool,
we highlight which groups are mostly involved and profit
(Dev/Ops/Use) and provide a best practice choice. With each
tool added to the infrastructure, we achieve another leap
towards automation. Most importantly, tools in the same class
are often not interchangeable, but introduce compatibility
dependencies expressed by arrows. These dependencies can
quickly narrow down the choice for downstream tools. The
first and most important decision is the code hosting and
revision control system for developers. Most other tools
downstream in the roadmap depend on this choice. We made
best experiences with git-based systems such as GitHub or
its OSS pendant GitLab, being de-facto standard among
OSS communities. Likewise, we recommend JIRA for issue
tracking, Jenkins for continuous integration and Docker for
containerization. Finalizing our roadmap, we propose boxed
solutions for the continuous deployment of applications that
end-user communities can choose from app stores. In the
next paragraphs, we focus on two DevOpsUse instruments
particularly designed for end-user involvement, i.e. social
requirements engineering and monitoring & analytics.

Social Requirements Engineering. Traditional requirements
engineering techniques such as focus groups require co-
presence of researchers, engineers, and end-users and efforts
in traceably post-processing results. Across projects, we found
such practices unsustainable in terms of excessive traveling
and personnel costs. We furthermore found that end-users
conceive issue trackers as intimidating due to their technical
complexity and jargon. We therefore developed a large-scale



social requirements engineering (SRE) approach, supported by
Requirements Bazaar, an open source social software platform
for requirements negotiation among non-technical end-user
audiences and professional developers. In order to guarantee
traceable awareness on the development process, we realized a
two-way integration involving automated data and communi-
cation flow between Requirements Bazaar (cf. [17]) and an
issue tracker. Once a developer commits to the realization
of a requirement in Requirements Bazaar, the requirement
including all its attached comments and artifacts is pushed
into the issue tracker. Subsequent updates on the development
process in the issue tracker relevant for end-users are pushed
back to Requirements Bazaar to keep end-users aware of
development progress.

Monitoring & Analytics. In order to create the basis for
short-term or even longer term awareness on quality and im-
pact, contemporary deployment infrastructure is instrumented
with various means for and forms of monitoring and an-
alytics. For example, monitoring frameworks are installed
for the automated collection and contextual enrichment of
usage data, while social media channels serve as data sources
for human-generated feedback. Different data sources are
triangulated, filtered, processed and visualized in analytics
dashboards to ultimately create awareness for wide arrays
of stakeholder-dependent target metrics, e.g. infrastructure
sanity for operations or user counts for dissemination. State-
of-the-art analytics frameworks are usually of myopic focus
limited to standard metrics for development, operations, and
management. However, the analysis of complex phenomena
emerging from the use of the designed systems is an essential
task in research projects, with competing notions on relevant
quality and impact factors within and across end-user commu-
nities. We address this gap with our MobSOS framework for
achieving shared community success awareness by negotiating
individual stakeholder notions of success with the help of fluid
success models [19].

Social DevOpsUse Instruments

In addition to technical DevOpsUse instruments, our
methodology includes a set of seeding social instruments,
effectively preparing research projects for seamless transition
to independent OSS communities after project end. First,
these social instruments must enforce setup, maintenance and
continuous adaptation of the aforementioned infrastructure
for sustained successful use. Second, these instruments must
actively pursue dissemination and exploitation strategies to
secure resources for sustained long-term development and
operations. They must reach out to multipliers influential
in mobilizing end-user communities and external developers
for sustained development and operations. These social in-
struments are subject to the organization of virtual teams,
ranging from decentralized self-coordination to centralized
venture teams [27]. Taking into account the motivational
situation and the management structures at research centers
and universities typically involved in collaborative research

projects, blended approaches are recommended. According to
our findings, a combination of decentralized short- and mid-
term self-coordination, with a system architecture core team
installed to deal with long-term, high-impact decisions and
strategic development objectives works best in large research
projects. For the decentralized self-coordination we made best
experience with a distributed team structure, the Developer
Task Force (DTF). For the core architecture control we made
best experience with a governing body, the Architecture Board.

Developer Taskforce.
Splitting the software development effort in a research

project into artificial teams should be avoided, as part-time
development in small distributed teams will hamper the
progress [28]. To facilitate the emergence of a team spirit
with shared ownership, we recommend to build one single
virtual team early into a research project. In line with previous
experience (cf. Section III), we recommend a Developer Task
Force as informal community to bundle developer resources
from distributed partners in a virtual team structure. Typically,
projects involve either professional developers from partic-
ipating companies or researchers/PhD students at academic
institutions. In either case, developers usually do not work
full time on a single project. A unified, virtual task force shall
help to sustain a steady heartbeat [14] in the face of these
challenges. Task force members are usually key contributors in
the project software engineering life cycle. They are involved
in decision making for choosing the right technologies to
solve architectural and implementation problems. They are
also the closest stakeholders that can ensure traceability and
a good balance between project requirements, decisions and
implementation status. Moreover, task force members bring
in their professional experience to influence decisions on
employed software engineering methods and related support
infrastructure. The task force can be seen as an exploration unit
with clear competences, which can take initiative in proposing
technical solutions to project managers. Even though the devel-
oper task force is ultimately subject to internal project policies
and reports to the leading structures, the participation and
influence of senior project members is discouraged to facilitate
informal knowledge exchange among junior researcher and
developer peers, and to establish a space for experimenting
with prototypes and innovative solutions in the scope of
the project’s development agenda. The task force should be
self-managed and given considerable autonomy for defining,
adopting and achieving short- and mid-term objectives and
practices. This will lower the pressure coming from rules and
regulations, known to be a failure factor [14].

To obtain an overview of relevant existing technologies,
an established initial activity of the developer task force is
to conduct an initial technology survey. Existing technology
options are surveyed by the technical partners and documented
internally. Goal is to explore, assess, negotiate, and ideally
reach early consensus among the distributed teams involved
in the task force. In early cycles, this activity will help to
remedy challenges related to architectural decisions. Also,



such a survey will help to reveal whether licensing models
of adopted components and software are compatible with the
project’s licensing model.

Architecture Board. Projects should further establish a gov-
erning body as authority to make binding decisions for all
partners. We propose an Architecture Board to reflect its
duty of making and enforcing global decisions on technical
architecture of software artifacts and engineering processes.
This is particularly useful when development process and
conventions are set up upfront [28]. The authority should
enforce policies and be the only entity allowed to change
policies. Moreover, we suggest to establish this authority in
the project contract—either as a dedicated governing body or
assigned to an existing board, e.g. the project management
board—to make it a legally binding instrument for making
project wide decisions on all software engineering related
issues. The Architecture Board will also help to increase
stakeholder commitment due to stronger involvement in de-
cision making. Informed, consensus-oriented, and forward-
directed decision making, optimally supported by consulting
instruments, increases the chance of achieving sustained post-
project exploitation and impact.

External Involvement.
Large research projects usually face a challenge in meeting

the goals of multiple stakeholder groups. Researchers aspire
high-quality publications, developers target an efficient de-
velopment process, and application partners wish for readily
employable software. Projects must therefore provide plat-
forms to engage stakeholders and allow for communication.
We made best experiences with establishing co-design teams,
consisting of representatives from end-users, application part-
ners, researchers, and developers. These permanent, open work
groups elaborate design ideas aligning software prototypes
with requirements stated by end-users or their application
partner proxies. Main concern of these design teams is to
drive technological innovation based on real problems and
scenarios. They produce usage scenarios and wire frames
significantly helping to reduce development efforts, as they
directly formulate concrete demands to prototypes. Including
end-users by welcoming ideas and requirements additionally
raises stakeholder engagement and more informed decision
making, as it explicitly considers particular end-user impacts,
and not only impacts beneficial for the research project and its
partners. With a wide variety of different stakeholder notions,
finding commonalities and pivotal elements across these ideas
is key to success. A constant dialogue between design teams
and developers is maintained by assigning at least one design
team representative to the DTF. Thereby, current endeavors of
the co-design teams can be directly transferred to the DTF
meetings and vice versa.

Especially with respect to sustainability beyond project life
time, projects should start initiatives towards building a vibrant
developer community around project offerings. Again, we
made best experience with providing the DTF with freedom
to take active responsibility in pushing sustainable community

building in different kinds of public appearances, especially
at research conferences and OSS meetings. Such activities
should even start at early stages into development, despite
an often found reluctance of consortium members to present
preliminary, often intangible outcomes. The common sense
mantra “Build it, and they will come”, often purported by
developers is the wrong approach. Instead, project members
should follow the mantra “Show me what you got”, as it is
especially important in the OSS community to gain trust and
credibility.

Demo sessions, hands-on workshops, or competitions at
conferences usually attract younger, development-oriented re-
searchers from different project contexts and thus facilitate
active exchange and cross-fertilization. OSS developer meet-
ings usually offer a wide range of formats, e.g. exhibition
booths, lightning talks, or theme rooms. The motivation to
appear at such events is not only to disseminate project results,
but mainly to learn from rapidly evolving best practice in the
OSS scene, and to search for high-profile OSS projects bearing
potential to sustain project results under their umbrella.

Last, but not least, we made best experience with hosting
own community building events, e.g. in the form of on-site
hackathons or remote development contests. Developer task
force members usually provide for a convenient and wel-
coming development environment and serve as assistance for
external developers, introducing them into respective offerings
of the research project and inviting their contribution.

V. LESSONS LEARNED

The experiences about the software engineering process
reported here are the synopsis of years of work in creating
and sustaining results within and beyond the scope of a funded
research project. As part of the European research community,
we see this as an opportunity to facilitate software engineering
in future research grant programs, e.g. in the EU Horizon
2020 programme, which seem to be even larger and more
product-oriented than the integrated projects of the EU FP7
programme. Here, we present the key lessons we learned.

People. The software engineering process in research projects
is largely a social one, involving many stakeholders with
different goals and agendas. Even with a good project plan,
requirements and priorities of stakeholders are subject to
emergent change over time [23]. These changes must be
captured and traced as good as possible. Since most of the
knowledge of the people is opaque in the beginning, there
must be sufficient opportunity to meet and give voice to
the stakeholders. Often it is argued that the innovative ideas
are coming from the researchers in the project. This may
be true to some extent, but ideas are forlorn if stakeholders
are not willing to adopt them, usually described as “not-
invented-here” syndrome. Traceability of social processes is
even more important in the light of Open Source Software
communities being subject to generation changes within their
life cycles [29].



Open Source Development. It is essential to make a strong
commitment towards open source development. Many research
projects are understaffed with experienced developers. Thus,
outreaching to the OSS communities should be integral part
of project dissemination from the very beginning. However, it
is an illusion to think that a one-shot approach is working.
Experienced and established OSS communities have subtle
means for checking the desired long-time commitment of
developers. In the same manner, research projects pursuing
OSS strategies should use such means to identify and nurture
commitment of external parties. As a consequence, also project
developers need training in OSS development and sufficient
freedom to participate in an OSS community and eventually
become a valuable member. An issue, which is usually ignored
in the beginning, is the OSS licensing models. These turn out
to bring up complicated administrative and legal routines in
all involved companies and institutions.

Automation & Integration. Project partners should be able
to focus on true communication and collaboration. Therefore,
partners should make best efforts to establish tool chains min-
imizing the need for manual intervention in highly repetitive
tasks, e.g. regression testing and automated builds triggered
by new events from revision control, as well manual transfer
of information from one system to the other, e.g. copying
commit messages belonging to an issue from revision control
to an issue tracker. Most providers of DevOps tools have
recognized this key requirement for automation and integration
and clearly document their compatibility with other tools.
However, partners must analyze particular compatibilities dur-
ing upfront technology surveys to avoid later integration issues
and automation gaps, effectively resulting in unnecessary
manual work again. Interestingly, even tasks like compliance
checking become automizable with new standard formats for
communicating components, licenses, and copyrights asso-
ciated with software packages, e.g. Software Package Data
Exchange (SPDX), thus avoiding licensing problems early.

Awareness. Creating and sustaining awareness of software
engineering activities as well as the evolution of software
artifacts as part of project research work is of high importance.
Creating awareness involves events where project members are
showing up or which are organized by the project for branding
the project (for instance, competitions or developer camps).
Awareness also means to provide tools for reflection in the
developer community. In particular, tools for monitoring and
analytics are key prerequisite to awareness, but still require re-
sources allocated to training and the active reflection of needs,
interests, and outcomes between analysts and stakeholders.
Awareness means moreover a process of becoming for the
members of the development community.

Time. Time is an essential factor. It is paramount to start very
early in shaping and providing the development infrastructure
and grow continuously. In that sense, a pre-configured devel-
opment infrastructure like the one drawn in our DevOpsUse
methodology, which can be rapidly deployed for a new project,

is a better choice than starting from scratch. However, research
project consortia should not underestimate the lack of capac-
ity in some project members spotting issues in a common
project infrastructure. Such issues should be openly discussed
and resolved, if necessary with the help of an architecture
board. Unresolved issues of that kind often lead to separated
installations of alternative infrastructures at individual partner
institutions and in consequence to integration issues that are
often discovered very late into the project. For every partner
there is a certain entry barrier to new tools and infrastructures,
either of financial nature due to licensing costs or of social
nature due to lack of training, experience, or interest. Conse-
quently, we built our infrastructure mostly on widely used and
well-established open-source, industry strength products.

VI. CONCLUSION

In this paper, we discussed the essential research gap
of lacking methodologies and technical infrastructures for
sustainability-aware software engineering in collaborative re-
search projects. We first discussed two longitudinal case
studies in large-scale EU research projects and extracted
common challenges. Based on our empirical findings, we then
presented our DevOpsUse methodology as an agile software
engineering methodology building upon DevOps, OSS devel-
opment practice, and with a strong focus on end-user inclusion
and awareness. We furthermore presented our DevOpsUse
infrastructure as a highly integrated and automated set of freely
available OSS support tools, as well as social instruments for
sustainable community building. We finally contributed a set
of lessons learned with the intention to inform future projects
considering the uptake of a DevOpsUse methodology.

However, our results bear several limitations. First and most
obvious, our case studies were based on two large scale and
several smaller scale projects we were involved in. Although
conversations with representatives of other projects exhibited
very similar challenges and patterns of evolution with very
different partner constellations, we see the clear need for more
case studies to replicate and further generalize our findings.
Second, not all challenges and instruments of our DevOpsUse
methodology apply for all projects. Especially in smaller
projects, resources do not suffice to establish the complete
methodology and infrastructure. We are currently observing
how partial configurations of our DevOpsUse methodology
apply in smaller research projects. Third, our methodology
only applies to research projects compliant with an open
research philosophy. As such, confidential research projects
and/or research projects producing closed source implemen-
tations inherently disqualify for the application of the full
DevOpsUse methodology, while DevOps remains possible.
Finally, as part of the everlasting duality between social and
technical development [23], we must acknowledge, that any
software engineering methodology will evolve in parallel with
the software artifacts it produces and all involved people, thus
gaining new insights from project to project in a double-
loop learning fashion. As such, we continue our endeavor to
apply longer term community data collection and analytics



in order to gain a deeper understanding of the current and
future evolution of sustainable software engineering practice
in research projects across communities, including the most
relevant universally valid quality and impact factors [19].

With this contribution we aim to preserve previously and
currently successful practice in a way that serves future project
consortia as shortcut in planning, establishing, and maintaining
their software engineering processes, either as a dedicated
work package or by picking a subset of the instruments
and activities that are tailored to their needs. Many research
projects seem to currently reinvent the development wheel
independent of each other, thus wasting precious resources,
particularly during the early forming stages of a project’s
processes. With this work we eventually want to establish
a culture of sharing and continued refinement of sustainable
software engineering best practices in and across research
projects and communities focusing on societal challenges.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme projects “Respon-
sive Open Learning Environments” (grant no. 231396) and
“Learning Layers” (grant no. 318209), as well as the Euro-
pean Union’s Horizon 2020 Programme through the project
“WEKIT” (grant no. 687669). We thank all project partners
for collaboratively shaping the DevOpsUse methodology.

REFERENCES

[1] European Commission, “What is FP7?
The Basics,” 2015. [Online]. Available:
https://ec.europa.eu/research/fp7/understanding/fp7inbrief/what-
is en.html (last access: Feb 2017)

[2] United Nations and Accenture, “The United Nations Global Compact-
Accenture Strategy CEO Study 2016: Agenda 2030: A Window of
Opportunity,” UN Global Compact, Tech. Rep., 2016.

[3] R. Chitchyan, C. Becker, S. Betz, L. Duboc, B. Penzenstadler, N. Seyff,
and C. C. Venters, “Sustainability Design in Requirements Engineering:
State of Practice,” in Proceedings of the 38th International Conference
on Software Engineering Companion. New York, NY, USA: ACM,
2016, pp. 533–542.

[4] European Commission, “Budget FP7 Research Europe,” 2013. [Online].
Available: http://ec.europa.eu/research/fp7/index en.cfm?pg=budget
(last access: Feb 2017)

[5] National Science Foundation, “FY 2014 NSF Bud-
get Request to Congress,” 2014. [Online]. Available:
http://www.nsf.gov/about/budget/fy2014/pdf/18 fy2014.pdf (last access:
Feb 2017)

[6] European Commission, “Open Source Strategy in
the European Commission,” 2016. [Online]. Available:
http://ec.europa.eu/dgs/informatics/oss tech (last access: Feb 2017)

[7] T. Scott and A. E. Rung, “Federal Source Code Policy - M-16-21
Memorandum for the Heads of Departments and Agencies,” 2016.
[Online]. Available: https://sourcecode.cio.gov/OSS/ (last access: Feb
2017)

[8] European Commission, “Free and open source software activities in
European Information Society initiatives,” 2015. [Online]. Available:
http://cordis.europa.eu/fp7/ict/ssai/foss-home en.html (last access: Feb
2017)

[9] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability Design and Software:
The Karlskrona Manifesto,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 2. Piscataway, NJ, USA:
IEEE Press, 2015, pp. 467–476.

[10] J. C. Carver, “First International Workshop on Software Engineering
for Computational Science & Engineering,” Computing in Science &
Engineering, vol. 11, no. 2, pp. 7–11, 2009.

[11] J. C. Carver and T. Epperly, “Software Engineering for Computational
Science and Engineering,” Computing in Science & Engineering, vol. 16,
no. 3, pp. 6–9, 2014.

[12] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post, “Software
Development Environments for Scientific and Engineering Software:
A Series of Case Studies,” in Proceedings of the 29th International
Conference on Software Engineering. IEEE Computer Society, 2007,
pp. 550–559.

[13] H. Rhinow, E. Koeppen, and C. Meinel, “Prototypes as Boundary
Objects in Innovation Processes,” in Design Research Society 2012:
Bangkok. Conference Proceedings, P. Israsena, J. Tangsantikul, and
D. Durling, Eds., vol. 4. DRS, 2012, pp. 1581–1590.

[14] H. Huijgens, R. van Solingen, and A. van Deursen, “How to build a good
practice software project portfolio?” in 36th International Conference
on Software Engineering, ICSE ’14, Companion Proceedings, P. Jalote,
L. Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 64–73.

[15] N. A. Ebrahim, S. Ahmed, and Z. Taha, “Establishing Virtual
R&D Teams: Obliged Policy. CoRR, abs/1208.0994,” 2012. [Online].
Available: http://arxiv.org/abs/1208.0944 (last access: Feb 2017)

[16] H. Berger and P. Beynon-Davies, “The utility of rapid application
development in large-scale, complex projects,” Information Systems
Journal, vol. 19, no. 6, pp. 549–570, 2009.

[17] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, “Requirements
Bazaar: Social Requirements Engineering for Community-Driven In-
novation,” in 2013 21st IEEE International Requirements Engineering
Conference (RE) Proceedings. Los Alamitos, CA, USA: IEEE Com-
puter Society, 2013, pp. 326–327.

[18] M. Komssi, D. Pichlis, M. Raatikainen, K. Kindström, and J. Järvinen,
“What are Hackathons for?” IEEE Software, vol. 32, no. 5, pp. 60–67,
2015.

[19] D. Renzel, “Information Systems Success Awareness for Professional
Long Tail Communities of Practice,” Doctoral Dissertation, RWTH
Aachen University, Aachen, Germany, July 2016. [Online]. Available:
http://publications.rwth-aachen.de/record/667644/files/667644.pdf (last
access: Feb 2017)

[20] D. Renzel and R. Klamma, “From Micro to Macro: Analyzing Activity
in the ROLE Sandbox,” in Proceedings of the Third International Con-
ference on Learning Analytics and Knowledge, D. Suthers, K. Verbert,
E. Duval, and X. Ochoa, Eds. Leuven, Belgium: ACM, 2013, pp.
250–254.

[21] J. C. Westland, “The cost of errors in software development: evidence
from industry,” The Journal of Systems and Software, vol. 62, no. 1, pp.
1–9, 2002.

[22] European Commission, “FP6 IST Impact Analy-
sis Study: Final Report,” 2009. [Online]. Avail-
able: http://cordis.europa.eu/fp7/ict/impact/documents/wing-pilot-fp6-
final-report-18-12-09.pdf (last access: Feb 2017)

[23] W. J. Orlikowski, “The sociomateriality of organisational life: consider-
ing technology in management research,” Journal of Economics, vol. 34,
pp. 125–141, 2010.

[24] J. Davis and K. Daniels, Effective DevOps - Building a Culture of
Collaboration, Affinity, and Tooling at Scale. Sebastopol, CA, USA:
O’Reilly Media Inc., 2016.

[25] G. Hofstede, G. J. Hofstede, and M. Minkov, Cultures and Organiza-
tions: Software of the Mind, 3rd ed. McGraw-Hill USA, 2010.

[26] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
- Recommendation of the National Institute of Standardization and
Technology,” NIST, Tech. Rep., 2011.

[27] O. Gassmann and M. von Zedtwitz, “Trends and determinants of
managing virtual R&D teams,” R&D Management, vol. 33, no. 3, pp.
243–262, 2003.

[28] P. Kunszt, “Grid Middleware Development in Large International
Projects - Experience and Recommendations,” in International Confer-
ence on Software Engineering Advances (ICSEA 2007). IEEE, 2007,
pp. 82–86.

[29] K. Neulinger, A. Hannemann, R. Klamma, and M. Jarke, “A Longi-
tudinal Study of Community-Oriented Open Source Software Devel-
opment,” in Advanced Information Systems Engineering: 28th Interna-
tional Conference, CAiSE 2016, Ljubljana, Slovenia, June 13-17, 2016.
Proceedings, S. Nurcan, P. Soffer, M. Bajec, and J. Eder, Eds. Cham,
Switzerland: Springer International Publishing, 2016, pp. 509–523.




