
DevOpsUse: A Community-Oriented
Methodology for Societal Software Engineering

István Koren

Abstract The demanded fast innovation cycles of the ongoing digital transformation
create an unstable environment in which the demands of heterogeneous professional
communities need to be addressed. Moreover, the information systems infrastructure
of these professional communities has a strong influence on their practices. However,
the evolution of the web as infrastructure is shaped by an interplay of new technolo-
gies and innovative applications. It is characterized by contrasts, such as centralized
versus peer-to-peer architectures, and a large number of end users versus a small
number of developers. Therefore, our aim is to stabilize these dichotomies apparent
in the web by means of an agile information systems development methodology.
The DevOps approach promotes stronger cooperation between development and
operations teams. Our DevOpsUse methodology additionally fosters a stronger in-
volvement of end user communities in software development by including them in the
process of infrastructuring, i.e. the appropriation of infrastructure during its usage.
The developed DevOpsUse methodology and support tools have been successfully
validated by the transitions between three generations of technologies: near real-
time peer-to-peer web architectures, edge computing, and the Internet of Things. In
particular, we were able to demonstrate our methodology’s capabilities through lon-
gitudinal studies in several large-scale international digitalization projects. Beyond
web information systems, the framework and its open source tools are applicable in
further areas like Industry 4.0. Its broad adaptability testifies that DevOpsUse has
the potential to unlock capabilities for sustainable innovation.

István Koren
Information Systems and Databases, RWTH Aachen University, Aachen, Germany,
e-mail: koren@dbis.rwth-aachen.de

1

koren@dbis.rwth-aachen.de
This is the authors' preprint version of the paper appearing in Ernst Denert Award 2020.
© Springer 2021

2 István Koren

1 Introduction

The profound digital transformation of industrial processes is inevitably leading to
more software use. The underlying information systems not only need to be initially
developed, but they also have to be maintained. Shorter time-to-market processes
and far-reaching system integration additionally make it necessary to increase the
number of updates. To address this challenge, there have been tremendous advances
in software engineering methodologies over the past few decades. While historically
the waterfall model has been adopted for the strict process from formal contract to
product, it is now being replaced by agile methods. Technology support has also fol-
lowed this development. Modern frameworks are driving the separation of concerns
ever further. This has resulted in component-based architectures with microservices
on the backend and user interface components on the frontend.

Software development, however, is no longer only object of developers. Instead,
it has far-reaching implications into the world of business models and processes,
and society in general. Therefore, the question is whether current methodologies
can cope with the increased speed and widespread societal involvement. How to
incorporate modern aspects such as increased agency of end-user communities and
data sovereignty? Especially with regard to the end users, we notice that even in
agile methods like Scrum, the users are only at the beginning and at the end, i.e.
they are largely detached from the actual development. In our research we have
thus developed a methodology that explicitly integrates end-user communities. Our
solution is characterized by the deep integration of collaboration tools, as well as
the application of peer-to-peer architectures. At the same time, contextual forces
such as changing technologies need to be stabilized in order to allow a sustainable
development process. The evolution of information systems from mainframes to PCs
and cloud systems leads us to societal software, which increases the responsibility
of its users by paying as much attention to the process of creating software as to
the software product itself [46]. The implications of the research presented here go
beyond the technical aspects and open up new interesting questions that extend into
operational and legal perspectives.

This article is structured as follows. In the next section we discuss the motivation
behind our research. Section 3 then presents the methodology in detail. Secion 4 pro-
vides an evaluation of technological and methodological aspects, before discussing
implications for societal software development projects. Finally, Section 5 concludes
this article and gives pointers on future work.

2 Motivation

The unrestrained demand for software products together with fast development cycles
lead to many challenges. Rapid innovation cycles and changing technology create a
disruptive and unstable environment in which the requirements of endless commu-
nities must be met. The shift in speed becomes evident when considering the update

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 3

Fig. 1 Dichotomies in Web
Information Systems Engi-
neering

Device Innovations
IoT / Wearables / Mixed Reality

Web Infrastructure

Changing Practices through
Digital Transformation

Workplace Learning / Business Models

Cloud
Computing

Peer-to-Peer

Developers

End Users

rates in the newly established app market economies of mobile operating systems.
The number of available developers alone cannot satisfy this demand. Research fields
such as End User Development attempt to solve this dilemma by putting tools in the
hands of users to build software themselves [34]. The shift towards societal software
development mentioned in the previous section extends this end-user integration and
expands it to the entire methodology.

Information infrastructure plays a special role here. The general term infrastruc-
ture thereby refers to an underlying factor. Information systems infrastructure, while
only partially visible and thus hard to grasp, has a strong influence on user and
developer practices. Driven by a body of standards, the web has reached significance
not only of technological nature, but also quite distinctly of a societal dimension. Its
proliferation highlights the ubiquitous nature; it is now available everywhere, on vari-
ous types of hardware. Constantly evolving standards thereby ensure interoperability
between manufacturers and devices. Today, smartwatches have built-in browsers,
industrial assets are controlled by web interfaces, and even the touchscreen control
panels of the latest generation of space capsules work with web technologies like
JavaScript and HTML1. Conceptually, the web is a graph of linked resources [40].
Open interfaces allow the composition of these linked resources to form distributed
services and apps. However, changing interfaces can also make them drift apart. One
of the web’s key strengths is therefore also among its weaknesses: the continuous
context changes do not only increase the web’s applicability and adoption, but also
require constant retraining of users, developers and operators in order to handle the
new realms.

Figure 1 highlights current dichotomies in web information systems engineer-
ing. On the left, we see the everlasting duality between centralized and distributed

1 cf. https://cnet.co/3fiK0V5

https://cnet.co/3fiK0V5

4 István Koren

technologies2, plus the combination of those. On top, device innovations create a
constant need for software adaptation, frameworks and even usability considerations.
On the right, the imbalance is portrayed between a small number of developers who
know how to create software versus a large number of end users who as domain
experts know what they need. Finally, the bottom layer refers to the ongoing changes
in workplace settings caused by digitization. Connecting all of these aspects, the
challenge is to create a core that holds and links everything together.

2.1 Central Hypothesis

In this field of mutually influencing dichotomies and the underlying infrastructure,
several research questions arise. What are the building blocks of community-oriented
information systems? How can we enable communities to develop information sys-
tems on their specific information systems infrastructure? How to create a sustainable
life cycle of the developed information systems? Our central hypothesis is that we
can provide a stabilized socio-technical infrastructure on top of the web as open
ground. We therefore augment the collaborative notion of DevOps as automation-
driven cooperation between developers and operators by the notion of end users. The
goal of this extension to DevOpsUse is to make information systems more resilient
to technological disruptions by continuously engaging their users. We provide au-
tomation of end-user participation via tools for social requirements engineering and
service deployment, amongst many others. Throughout this article, we give selected
pointers to these tools; for the in-depth discussion and answers to the above questions
we refer to the dissertation [26]. As overall methodological research framework, we
work along the design-science methodology by Hevner et al. [17]. The seven guide-
lines tackle the problem solving process by building and applying an artifact, that is
later evaluated with due rigor. Instead of a single design artifact, we created multiple
particular tools that we then connect in the overarching methodology.

2.2 Research Background

Agile practices in software engineering promote a stronger focus on the social as-
pects like the development team and the customer. Additionally, the mindset of the
Agile Manifesto acknowledges frequent changes and overall working software [12].
Most popular instantiations include, for instance, Extreme Programming, Scrum, or
Kanban. DevOps, as a clipped compound of development and operation teams, is
driving a stronger cooperation between these by extensive automation. Recently,
related concepts have been introduced, like DevSecOps that stresses the growing
importance of security. We argue, however, that these methodologies do not explic-

2 The reader is kindly referred to the history of computers from mainframes to personal computers
to the cloud, back to current edge computing efforts.

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 5

itly integrate users into the development process itself. In Scrum, for example, users
appear at the beginning and end of each sprint. Integrating end users, more specif-
ically Communities of Practice (CoP) as groups of professionals working towards
a common goal [53], helps not only leveraging their domain knowledge, but also
increasing their agency and involvement, thereby sustaining the development results.

Approaches that integrate end users are categorized as End User Develop-
ment (EUD) [34]. According to Liberman et al., there are two possible realizations:
parametrization of software products, and creation from scratch. The research domain
of EUD is rather concerned with the second. Numerous ways have been introduced,
like macros for automating tasks in office applications and programming-by-example
in smart home settings. Yet they all specifically target an application case and do
not extend their findings to the methodological core. In our research, we look at
the underlying structures supporting information systems: the infrastructure. Gen-
erally spoken, an infrastructure is “an underlying base or foundation especially for
an organization or system” [1]. In the obvious analogy of traffic infrastructure, road
networks connect cities and countries to ports and other continents. With this, we
can exemplify the transitory nature of infrastructure: what is infrastructure for one
(driver) is the work item for the other (road worker). This transition is intrinsically
much faster in software engineering, where today’s developer tools render it pos-
sible to build a simple application and scale it to thousands of users in the matter
of a few days or hours. In information systems literature, the term Infrastructuring
has been coined [51, 41] to signify the creation and continuous adaptation process.
It represents in-situ design work, respectively design-in-use as opposed to design-
before-use [42]. To infrastructure emphasizes the conditional, flexible and open
character of the infrastructure design process [51]. Thereby, the creation process is
shaped by conventions of practice. At the same time, the demands of professional
communities are under constant change, so their designs are expected to evolve with
them [5]. This highlights the need for better collaboration between communities
and the developers and operators supporting them. Communication is considered an
essential part of infrastructuring that acts as a bridge between actors and resources in
different contexts and practices [35]. Similarly, the gap between users and designers
is one of the major challenges in design [47].

It is costly to put a lot of work in features that are not needed. Open innova-
tion tackles the circumstance that ideas are often planned without meeting the real
requirements, by opening up the ideation process to external influence [9]. How-
ever, the duality between being too closed and too open may harm the original
business model of companies. For a sustainable open innovation strategy, we argue
that the opening must be well-integrated into the methodological foundation. This is
impressively demonstrated by the open source movement in the software industry,
scaling to a massively distributed, open effort. Tuomi therefore sees open innovation
to be strongly related to open source software [52]. In this context, Hippel’s lead
users [18], who stand for domain experts acting as innovators, need to be included.

In this section, we explained the theoretical backgrounds that have significantly
influenced our research. In the following, the DevOpsUse methodology is explained
in detail.

6 István Koren

Fig. 2 The DevOpsUse life
cycle has the DevOps model
at its core, while aspects of
end user communities are
surrounding and influencing
it.

Develop & Test

Release & Monitor

DEV

OPS

USE

DEPLOY

MONITOR

AWARENESS

IDEAS &
NEEDS

CO-DESIGN

FEEDBACK
DEVELOP

TEST

BETA
TESTING

CONTEXT
PRACTICE

3 DevOpsUse Methodology

One of the main parameters that influences the velocity in software engineering in the
context of frequent changes is the choice of the software development methodology.
This area has already seen a great deal of progress in the last decades: The shift from
inflexible waterfall models to agile environments has made a significant contribution
towards dealing with change. DevOps is a recent concept that furthermore includes
operators and thus provides a holistic view on development and deployment [11]. In
this approach, automation between these groups plays an important role in resolving
the inherent conflict between them. At the core of Figure 2 we see the simplified life
cycle of the cooperation between developers and operators. The arrows represent
steps involving automation. Starting from feedback on the top, i.e., the requirements
engineering phase, the development of software takes place. The resulting artifacts
are then tested. From the testing phase, the software gets delivered and staged
to deployment. Finally, its usage is monitored. According to this conception, the
points of connection to users become clear: specifically, at the beginning (feedback)
and at the end (monitoring). Conversely, this model is characterized by a lack of
attention to end users, as they are not explicitly involved in any of the development
or operational phases. The software artifacts produced therefore still have a lot of
potential to become even more innovative and user-friendly.

As progressive digitization affects more and more parts of our lives, software also
plays an increasingly important role therein. The detachment of development prac-
tices from societal processes would therefore become even more critical in the future.
We therefore propose DevOpsUse as a new methodological foundation for societal
software engineering. It adds to DevOps the user as a cross-cutting concern across
the whole development and operation cycle. As a vehicle to carry out these ideas,

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 7

our methodology focuses on the underlying information systems infrastructure, upon
which development, operation and usage is happening. The inclusive development
process leverages the collective strengths and potential weaknesses of the people
involved.

The outer circle of Figure 2 exemplifies points of user participation in software
development. In the following, we highlight these aspects while going around the
circle, and present the overarching elements that conceptually connect these points.
The first aspect is continuous innovation, i.e., the influx of new ideas at every
development and usage phase. In particular, we showcase the boundary objects
connecting the individual tools.

3.1 Continuous Innovation

Requirements Engineering (RE) captures the goals of the users and is the basis for
all other development activities [43]. However, common issue trackers are not easy
enough to be used by end users. Overall, they are very technical and require to specify
details, while for users it is often not evident whether it is caused by a backend or
frontend bug. Many open source projects on GitHub additionally require to follow a
strict template with developer-specific terms that are hard to understand.

Social requirements engineering aims at collecting requirements in a way that
resembles social networks like Facebook and Twitter [45]. It serves both developers
and end users; the latter can easily enter new ideas or bug reports, and approve
existing ones, while the former can start a dialog with the reporting users through
comments. Methodologically similar, CrowdRE describes automated or semiau-
tomated approaches to integrate a large number of users into RE [14]. However,
CrowdRE explicitly discusses pull and push mechanisms as feedback patterns. Con-
trary, in DevOpsUse users are part of a community with developers. Specifically,
our Requirements Bazaar3 web application extends social RE to web scale. It is
a continuous innovation tool that allows a social exchange of ideas while making
requirements traceable across ideation, conception and realization phases. Follow-
ing the design-science methodology, it was developed iteratively with continuous
exchange of its users on the very same platform. The web application runs on mo-
bile and desktop browsers. Filtering functionalities allow to filter only the most or
least active requirements, for instance. As a conclusion of this section, we deem
continuous innovation principles to be important to keep up disruptive capacities of
information systems and to create a sustainable long-term development process.

3 cf. https://requirements-bazaar.org

https://requirements-bazaar.org

8 István Koren

3.2 Collaborative Modeling

Eliciting the mental representation of stakeholders while being as close to the real
world as possible is one of the challenging goals of modeling. At the same time,
it is a highly social activity. We thus see models as the smallest common denomi-
nator between the domains of developers and end users. In our community-driven
approach, the mutual engagement of developers and end users within a CoP help to
build better tools. As a starting point, we take a formal description of REST-based
APIs available in service repositories on the web. The OpenAPI interface description
language (formerly called Swagger) is a well-known format that is widely used for
automatic verification and conformance checks [38]. Along with the goals of model-
driven software engineering, it allows the type-safe generation of API access layers
for frontend applications. We leverage its expressiveness and created a web-based
collaboration tool for wiring services together with user interface components. For
this reason, we used the Interaction Flow Modeling Language (IFML) that is gov-
erned by the Object Management Group, the same standardization organization that
oversees the Unified Modeling Language (UML). It is is a visual domain-specific
modeling language for creating visual models of user interactions and frontends [7].
The Direwolf Model Editor therefore allows the model-driven composition of APIs
and UIs [30]. Technically, it translates the data types described in an OpenAPI de-
scription into a palette of possible UI elements, like an HTML list for an array or a
label for a string. Similarly, object types that are used as input attribute of a service
result in an HTML form being generated. Besides the user interface creation, the tool
can support other types of collaborative model creation, as we have demonstrated
for example with the iStar 2.0 strategic goal modeling language [30].

The Direwolf Model Editor is a boundary object between end users and devel-
opers. It shows how model-driven methods and associated benefits such as gen-
eralization and code generation can be leveraged in a community-driven end user
development approach. Using generative approaches, repetitive patterns in appli-
cation creation, like creating input forms based for API inputs, can be scaled to a
myriad of users and device types.

3.3 Monitoring

At the intersection of professional communities, the IoT, web services and peer-
to-peer communication between individuals and devices, challenges of analytics
are amplified. Visual Analytics is the “science of analytical reasoning facilitated by
interactive human-machine interfaces” [23]. It facilitates the exploration of large
data collections by combining the best of both worlds; computers that can cope with
large amounts of data, and humans who can see links and dependencies between two
seemingly unrelated datasets.

Since we noticed a lack of open-source or commercial visual analytics tools that
are general-purpose, draw on heterogeneous data sources, are community-aware,

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 9

Fig. 3 Screenshot of the SWEVA Collaborative Visual Analytics Tool

and can be embedded in community-oriented applications, we developed Social
Web Environment for Visual Analytics [29]. It visualizes data coming from and
flowing between Internet of Things device networks, social (human) networks and
the communication between apps and their components. Its web environment enables
a model-driven visual flow design of processing pipelines, which is executed in
real-time. Thereby, data sources can be anything from real Industry 4.0 machines,
body-worn wearable sensors or input captured on smartphones. Possible methods
include for example social network analysis like (overlapping) community detection
and expert identification.

Figure 3 shows a screenshot of SWEVA. The tool allows different community
members to work simultaneously on models and visualizations to support each
other. On the left, the collaborative modeling tool allows to design visual analytics
pipelines. The underlying data model is a directed acyclic graph, whose topological
ordering ensures that the pipeline can be run without conflicts. It highlights broken
nodes to enable quick troubleshooting. The nodes represent either data retrieval
operations, custom calculations, of user input. Currently, the tool supports text,
number, numerical slider, boolean toggles, enum selection, and fixed value inputs.
On the right, the collaborative visualization tool is responsible for showing the results
of the visualization pipeline, and influencing its interactive parts by displaying the
previously configured user input possibilities. In-between these parts sits the core
framework, which runs the modeled data processing pipeline. It can either be run
locally or remotely on an execution service. All parts or the whole is embeddable
into third-party web applications via custom HTML elements. For instance, the
<sweva-visualization-container> integrates the right part of Figure 3.

10 István Koren

3.4 Connecting the DevOpsUse Life Cycle

In the following, we connect the aspects of the previous subsections with the three
particular stages of DevOpsUse, development, operations, and usage. We present
aspects of industrial state-of-the-art, related research work and finally, how we tackled
the challenges by showing how they contribute to the overall infrastructure.

Development The role of end users in requirements engineering, either directly
through focus groups or indirectly via domain experts, is important by definition. In
contrast, end-user involvement during actual programming is much more difficult,
as the cognitive hurdle in common textual programming languages is much higher.
Increased componentization effors in software engineering have led to higher main-
tainability and reduced complexity of individual software packages. This applies
to user interfaces just as much as to the encapsulation of many basic app func-
tionalities by libraries. On the backend, microservice architectures similary lead to
higher maintainability and better scalability. To ensure that modularization does not
come at the expense of complexity, standards are required for the interfaces. On the
traditionally client/server driven web, the standards can be roughly assigned to the
frontend, the backend, and the communication in between. The formal background
of standards on the web make them applicable to model-driven technologies like
validation, runtime interpretation and code generation. User interface components
in particular are subject to modeling efforts, as they can be effectively abstracted.
Additionally, they are very concrete in terms of the cognitive model of end users, as
user interfaces provide the entry point to any application.

Numerous research works have utilized this circumstance by providing formal
models as interface description languages. Standardized user interface modeling ap-
proaches for instance include Abstract Interaction Objects [4], ConcurTaskTrees [39],
and Cameleon [8], amongst others. Prototypes like Swashup [36] or frameworks like
ServFace Builder [37] allow to graphically wire together visual representations of
components. Similar prototypes exist for connecting functionalities in the Internet
of Things, for instance by RAML for IoT [24], the open source Node-RED [22] or
the commercial IFTTT [21].

Similarly, our Direwolf Model Editor allows the wiring of user interface elements
with backend functionality. It builds on the idea that developer and end user com-
munities can support each other. Our tool allows the community-driven creation of
frontends by end users with domain knowledge. We are convinced that by enhancing
the collaboration between end users and developers, we finally improve the tooling
also for developers. In the end, the creation of context-specific, specialized user
interfaces, e.g. for filling a database in order processes, could be entirely done by
the users themselves. Letting domain experts create their own tools puts a focus on
their own mental model and understandings. Based on the established formalized
descriptions of service APIs, not only graphical, but also voice-based user interfaces
can be designed, such as for voice assistants.

Operation After a software system is developed, it gets delivered and finally
deployed to be executed and used. On a personal computer, software is downloaded
and then put on the local hard disk via an installer. For smartphones, the installation

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 11

process is even easier, as the app is selected in an appstore and with the click of a
button, the download and installation happens, after which the app icon appears on
the home screen. In web applications users can simply open up a URL and start using
the app; with modern progressive web applications, the web applications can even
be linked on the home screen, with the look and feel of native apps. On the backend,
concerning services, users are left out from the possibility of installing apps. The
question is therefore, how to allow community members to deploy services on their
own, community-specific infrastructure. For example, a learning community in the
construction sector could collect photographs of new building material on an in-
house server. For this, we leverage containerized microservices. Microservices, first
described by Lewis and Fowler and in a blog article [13] combine several advantages.
For instance, they decoupling allows them to be developed independently. Defined
interfaces (cf. the last section) make sure their compatibility, as they only have
to know their deployment URL to connect. Tooling concerning the operation of
microservices allow a high degree of automation. Software containers are packages
that bundle services together with their libraries, so that they can be run within a
sandbox with defined interfaces. This uniform format allows them to be deployed on
any host, and even makes it possible to change the underlying provider fast. Docker
containers have reached mainstream adoptions as particular technology, that can be
run inside clusters in the cloud (e.g., Kubernetes).

Thus, to enable end-user communities of practice to deploy their own services,
we conceptualized and implemented the Layers Box, a host environment for run-
ning Docker services. It is a federated cloud-in-a-box that brings industrial-strength
container technology in often inexperienced professional communities. One of the
main advantages is that CoPs maintain full control over their data, while keeping
the authority to decide which data to share. Its high degree of automation allows it
to be deployed on different kinds of hardware, i.e., local servers, or within private,
public or hybrid cloud environments. The built-in Layers Adapter is a light-weight
reverse proxy that accepts incoming service calls over HTTP and forwards them
to internally registered services. In the case of a sudden cloud burst, it may also
forward requests to previously configured remote Layers Boxes. As additional core
part, all Layers Boxes come with a single sign-on solution. For this, we chose the
OpenID Connect (OIDC) authentication standard, which is built on top of the OAuth2
authorization framework. OIDC is also supported by a number of online account
providers like Google, Auth0 or the German netID. Under the hood, our OIDC server
can connect to existing LDAP or Shibboleth user directories.

When deploying services close to professional communities using them, we are
entering the field of edge computing [48]. In the literature, typical use cases that
leverage the low latency on the edge are analytics [49], machine learning or visual
applications in the area of augmented and virtual reality [15]. Another possibility
to reduce latency by offloading applications from the cloud, is to use peer-to-peer
architectures. Peer-to-peer systems break up the dichotomy of client and server. In
use cases were large chunks of data need to be transfered through the network,
resources can be saved by directly forwarding data on the shortest topological path.
Another advantage is increased privacy, as data does not need to be routed over a

12 István Koren

workplaceML

activityML
Sensor Fusion

Collaborative Web EnvironmentCommunity

Body Sensors

Environm
ental Sensors

Workp
lac
e &

Ac
tiv
ity
De
sc
rip
tio
ns

Fig. 4 Immersive Community Analytics of Human Activities on the Shopfloor

central entity that can possibly intercept message content. We developed a number
of tools targeted to end-user communities that leverage recent web standards to allow
browser-to-browser communication [26]. We were able to show, that by providing
abstractions in terms of library supported, the increased complexity can be managed
well. Besides, advanced standards on the web render service discovery of local
Internet of Things devices possible, without the indirection of a cloud. In particular,
we connected the ideas of end user development and the IoT [28].

Usage We conclude the DevOpsUse life cycle by focusing on its usage aspect,
and in particular on analytics functionalities. Gartner reports several commercial
tools for analytical reasoning [20], for instance RapidMiner and Tableau. KNIME is
another visual workflow builder for interactive data analytics [3]. There are also tools
specialized on visualizing aspects of the Internet of Things, like the IBM Watson IoT
Platform [19] and the Bosch IoT Suite [6]. While DevOps focuses on metrics provided
by the host environment that are interesting to developers and operators, DevOpsUse
extends the approach to integrate end users by giving them tools for self-monitoring.
Through collaboration and awareness functionalities, multi-faceted visual analytics
with possibly conflicting views about interpretation of results can be carried out. Our
SWEVA tool allows to collaboratively design processing pipelines while accessing a
variety of community-specific data sources. We thereby leverage visual analytics that
combines the power of computer-generated analytics and human interpretation. The
approach is universally applicable, easy-to-use and runs on all web platforms, even on
constrained devices, as processing can be offloaded to more powerful nodes running
microservices. As a use case spanning the mentioned interplay of IoT, human and
services, we demonstrated its usability within the Immersive Community Learning

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 13

Analytics scenario portrayed in Figure 4. Learning analytics aims to collect, manage,
analyze and exploit data from learners and instructors to facilitate the actual learning
process [25]. It connects body-worn sensors described by the ARLEM standard with
a data processing infrastructuring running sensor fusion. The results are visualized
within the web browser running in the augmented reality headset.

For an in-depth discussion on community-aware analytics capabilities, for exam-
ple including the design of community information system success measures, we
refer to the dissertation [26]. Generally, our methodology and tool acknowledge the
collaboration between involved stakeholders. It is a concern that influences all phases
of software engineering. Although it is in the nature of stakeholder collaboration,
advanced real-time collaboration capabilities need to be made explicit and integrated
into development support tools.

4 Methodological and Technical Evaluation

We evaluate our methodology regarding three aspects. First, we look at three major
advancements of the web on a technological level; our framework was not only able
to handle, but even to support them. We then show how evidences of DevOpsUse
tools and processes can be found in a real societal research and development projects,
and present best practices. Finally, we look at the inherently more complex area of
Industry 4.0 and show how DevOpsUse relates to it and provides a path for its
continuous innovation.

4.1 Technology Evolution

Starting as a document exchange platform between researchers at CERN, the web
has come a long way and is now spreading into more and more areas. The speed
of its proliferation can be noticed by the conceiving and implementation of new
standards. This frequently changing context makes it hard to build on top of it.
With DevOpsUse, we were able to tackle three generations of technology that were
integrated into the web’s infrastructure over the last decade: peer-to-peer computing,
edge computing, as well as the Internet of Things. We thereby show, that we do
not only target communities but can also handle technological leaps well. In the
following, we shortly discuss each of them.

Near real-time peer-to-peer computing: The client/server-driven web is gen-
erally orthogonal to peer-to-peer technologies, which aim for direct connections
between two computing devices. Among consumers, peer-to-peer has long since
entered the mainstream, although it was initially tainted due to major file-sharing
lawsuits. Today, applications include video conferencing, blockchain technologies
and locally shared folders. On the web, the Web Real-Time Communication (We-
bRTC) standard made browser-to-browser messages possible around the year 2013

14 István Koren

with Google’s Chrome browser. In 2017, Apple and Microsoft followed with their
own implementations, and only recently, in January 2021, the version 1.0 of the
standard was announced by the W3C and IETF organizations. We evaluated the
technology early on and were able to cut browser-to-browser roundtrip latency from
around 150 ms to around 25 ms in a local network [27]. Specifically, following
the methodological core of building upon standards, we were able to replace the
connection layer of a collaborative multi-display user interface from a client/server
to a peer-to-peer architecture, without touching the user interface source code itself.
This enabled new use cases like gaming across browsers.

Edge computing: With the Layers Box, we pioneered self-managed installations
of services on-premise. In the meantime, the open source Kubernetes platform has
taken over the market rapidly. Serverless computing is a next evolutionary step in
the history of componentization and modularization that microservice architectures
pioneered for backend services. They further encapsulation service modules into
dedicated functions, each responsible for a single API call. This makes onboarding
new developers easier, as no large monolithic technology stack needs to be learned
to integrate new functionality. As it is possible to further package these into Docker
containers, they can be easily integrated into our Layers Box. The web is currently
undergoing another technological transition from resource-oriented to query-based
service interfaces. In this evolutionary step, the GraphQL framework for query-based
API access gains popularity. In a recent work, we were able to provide automated
transformations from the previously used OpenAPI stack to GraphQL [31]. This
relatively simple step allows all of our end user modeling tools can still be used.

Internet of Things: The model-based approach of connecting the API descrip-
tion language OpenAPI to IFML as described in Section 3.2, can be extended to the
Internet of Things as well. For that, we leverage the AsyncAPI documentation con-
vention that describes asynchronous event-based architectures as they are common
in the Internet of Things [2]. Again, in our tools, the replacement is a minor step, yet
it enables entirely new use cases.

The societal impact of each one of these technological steps is profound. Beyond
web information systems, the framework and its open source tools are applicable in
further innovative areas like mixed reality and Industry 4.0.

4.2 Best Practice Guidelines

We were able to demonstrate our methodology’s capabilities through longitudi-
nal studies in several large-scale international digitalization projects. Additionally,
scalability and involvement aspects were confirmed in entrepreneurial and medical
teaching courses. In the former, our student researchers acting as developers (com-
puter scientists) were asked to use and evaluate tools like Requirements Bazaar. In
the context of the latter studies, medical students in turn used the end-user-oriented
tools. Most of societal research problems require complex information systems that
need to be developed. Due to the involvement of our research group in multiple

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 15

Fig. 5 DevOpsUse Case Study With Four Co-Design Teams

European projects in the area of Technology-Enhanced Learning (TEL), it was obvi-
ous to analyze their technology development. The area of life-long learning in TEL
is particularly interesting to aspects of societal software development, as its main
subject are humans and their learning capabilities in changing professional environ-
ments. The speed at which new skills are needed as workplaces continue their digital
transformation is increasing.

Figure 5 portrays information system design and development activities within
the Learning Layers project of the European Commission (Framework Program 7,
runtime 2012-2016). They are put into context around the DevOpsUse life cycle.
The tool development was partitioned into four co-design teams. The precise team
descriptions can be found in a previous publication [33]. Two of them (Bits & Pieces
and PANDORA) tackled societal issues in healthcare, while the other two were
dealing with the construction sector (CAPTUS and Sharing Turbine). To analyze
their processes of information system development, we collected data points like
their initial requirements selection. Additionally, we gathered numerous artifacts
left behind by the design teams, including various pages created and updated in
the project wiki, text documents shared in the collaborative cloud space, as well
as photos, videos and audio recordings distributed within the project. Overall a
flow of information (domain knowledge) comes in from the left, while on the right,
developed artifacts and material can be seen. For instance, CAPTUS performed
a market study. PANDORA worked with interviews of end users and developers.
the Sharing Turbine team organized group workshops. Bits & Pieces created user
interface mockups and discussed them with researchers.

16 István Koren

Following our experiences in these and multiple other research projects dealing
with societal matters, we distilled best practices and recommendations to tackle com-
mon software engineering challenges, that we presented in detail earlier [46]. Here,
we shortly outline the main recommendations. Generally, they can be divided into so-
cial and technical instruments. Social aspects play a major role in community-driven
information systems development. We therefore set up two subcommunities. One is
the developer task force, a group of developers that regularly meet to tackle everyday
issues in software development. The other is a governing body, or architecture board
that decides with wider, often strategic impact on the project.

Concerning the technical setting, we suggest multiple building blocks. The tech-
nological development infrastructure needs to be standardized across participating
organizations. Following the ideas of open innovation in open source systems [52]
they work best when the pivotal point is institutionalized, i.e., central information sys-
tems need to be set up and fixed early on. For instance, it includes services for source
code management and versioning, continuous integration, continuous delivery, con-
tinuous deployment, as well as continuous innovation by tools like Requirements
Bazaar. These systems should be interconnected via means of automation, e.g., to
perform regression tests. The particular software systems need to be decided early on
to not hamper the initial development efforts. However, they should not be understood
as a fixed entity that cannot change over time and across projects. Recommendations
change over time because of the everlasting duality between social and technical
development. Pointers to particular software are highly susceptible to changes in the
tool environment and licenses. Overall, integration should be a convergent force on
three layers. First, social integration should happen with application partners, end
users and domain experts. Second, server-side integration ensures that services are
compatible to each other. Third, client-side integration makes it possible to share
data across apps.

As a one-stop-shop for interested open source developers, a developer hub should
collect all project documentation and resources like libraries. These dedicated web-
sites collecting all of an enterprise’s offers for developers or integrators is also
pursued by large companies like Google and Amazon. For instance, in our expe-
rience, video tutorials with accompanying textual documentation about particular
APIs work well as teaching material. Additionally, in our case, we were able to
retarget these videos for teaching DevOpsUse in our entrepreneurial lab course [10].

4.3 Application in Industry 4.0

In the last section we discussed the application of DevOpsUse in the realm of
large-scale societal development projects. An area that is even harder to manage
is the inherently complex Industry 4.0 setting. The term Industry 4.0 refers to the
fourth industrial revolution, driven by digital transformation and characterized by
data-driven insights [32]. Figure 6 discusses a typical setting in industrial com-
panies today. The environments are divided into the development, production and

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 17

Production
Environment

Machine
Data

Simulation
Data

Product
Data

Development
Environment

User Environment

Customer
Data

Feedback
Data

Process
Data

Test
Data

CAD
Data

Many Proprietary
Systems

Missing
Usage Data and

Feedback

No “Personalized”
Machine Data

ERP
Data

Fig. 6 Challenges of production settings

user. While in information systems development there are numerous programming
languages, integrated development environments and runtime frameworks, the pro-
duction (planning) landscape is characterized by an even more diverse set of design
and planning software, file formats, product and runtime specifications. This leads
to disruptive and incompatible data exchange. For instance, data and models are only
available within proprietary systems and not ready for cross-domain use.

These incompatibilities in information systems can be generally considered less
resource-intensive compared to asset-heavy industrial settings. Still, modern pro-
duction settings heavily relies on software, making particular aspects of DevOpsUse
applicable. In the interdisciplinary cluster of excellence Internet of Production at
RWTH Aachen University that started in 2019, we are currently actively implement-
ing the methodological findings of our research. Here, data plays a much larger role
than in the socio-technical systems of TEL that were discussed in Section 4.2. First
achievements were setting up a large-scale Kubernetes-based server cluster that is
able to instantiate services in Docker containers. Within this cluster, we have put
in place multiple databases to create a data lake [44] that ingests raw data from
production and makes it available for later data-driven operations. Following our
own recommendations, a central identity provider (Keycloak) is authenticating and
authorizing human users, and later industrial assets that want to push data into the
data lake. With the help of model-based technologies we want to automatically gen-
erate data schemas from SysML descriptions. Machine learning algorithms will then
be able to work on the data to generate (real-time) insights to automate processes.

While this work in still at its infancy, we have already made significant progress
setting up open source web technologies. For instance, we are currently evaluating the
use of the new bytecode standard WebAssembly to uniformely target computational
use cases on the edge and on the cloud. Another example is the use of GraphQL

18 István Koren

as the primary access layer to the data lake. Finally, the adoption of further means
of the DevOpsUse methodology, like continuous innovation and automation, may
unlock the full potential that Industry 4.0 promises in terms of productivity [50].

5 Conclusion

During the dissertation project, the full extent of which we could only touch on here,
we developed a methodology and tool support stabilizes the conflicting aspects evi-
dent in the development of information systems. With the advent of societal software,
development processes have become much more complex and engineering methods
have to consider informal structures of Communities of Practice much more than
before. Our community-oriented development life cycle DevOpsUse acknowledges
that existing agile methods do not integrate end users to the full extent. Using a digital
ethnography approach, where we as researchers took part, we validated our findings
in several large-scale societal development projects and their professional commu-
nities of practice. Our tools are available and actively enhanced as open source
solutions on GitHub4. Lack of interoperability between new and existing tools were
tackled by relying on standardized, open interfaces from industrial practice. Each
software developed features synchronous remote collaboration capabilities to stress
the collaborative nature of infrastructuring within communities [16].

Our work is based on the fundamental insight that communities work on their
specific but web-based infrastructure. Therefore, we have been guided by infrastruc-
turing theories from information systems and adjusted parameters on top of it, while
pushing established boundaries like in the case of peer-to-peer technologies. The
artifacts were created and communicated following the phases of the design science
in information systems guidelines [17]. For instance, we presented and discussed
results at several summer schools in the area of technology-enhanced learning, as
well as the open source community at venues such as FOSDEM. Additionally, we
carried out our research together with numerous students of our technical university,
for example in yearly practice-oriented lab projects, where students work together
with local high-tech startups.

We validated DevOpsUse with three technological shifts that happened on the
web, namely peer-to-peer technologies, edge computing, and the Internet of Things.
At the intersection of these, technical improvements such as reduced latency, eco-
nomical merrits, and even privacy aspects can be considered. Beyond the demon-
strated technology-enhanced learning projects, our findings can be applied to other
societal and industrial aspects of information systems development, such as In-
dustry 4.0. This opens up several interesting new challenges. We are working on
implementing the methodology in industry. Here, the impact of web technologies is
still small, but is expected to increase significantly, driven by artificial intelligence
methods that leverage data-driven technologies. In future, software engineering will

4 cf. https://github.com/rwth-acis

https://github.com/rwth-acis

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 19

likely play an even stronger role in cross-functional teams, integrating mathematical
and engineering disciplines. Yet, innovation as quality characteristic heavily relies
on feedback from multiple sources, in particular those of end users. Therefore, lever-
aging web technologies, the analytical cycle for instance of industrial manufacturers
will extend into the usage cycle, i.e., when produced artifacts are used by their
customers.

We are convinced, that our methodology is employable for future societal chal-
lenges and technological leaps as well. Information system development is best dealt
with in a societal context, explicitly integrating all community members while keep-
ing their agency and strengthening their involvement. In the end, the principles of
far-reaching automation and end user integration will pave the way for a sustainable
societal software engineering.

Acknowledgements Thanks are due to all those who supported me while I was writing my PhD
thesis. In the context of this chapter, I would like to thank my advisors Prof. Dr. Matthias Jarke and
PD Dr. Ralf Klamma as well as the reviewers for providing helpful feedback. The thesis project
has received funding from the European Commission’s FP7 IP “Learning Layers” under grant
agreement no. 318209, from the European Union’s Horizon 2020 research and innovation pro-
gram under grant agreements no. 687669 (WEKIT) and from the European Union’s Erasmus Plus
program, grant agreement 2017-1-NO01-KA203-034192 (AR-FOR-EU). Funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy - EXC-2023 Internet of Production - 390621612.

References

[1] American Heritage Dictionary of the English Language. Houghton Mifflin
Harcourt (2018)

[2] AsyncAPI: AsyncAPI specification 2.0.0 (2019). URL https://www.
asyncapi.com/docs/specifications/2.0.0/

[3] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P.,
Thiel, K., Wiswedel, B.: KNIME - The Konstanz Information Miner. SIGKDD
Explor. Newsl. 11(1), 26 (2009). DOI 10.1145/1656274.1656280

[4] Bodart, F., Vanderdonckt, J.: Widget Standardisation Through Abstract Inter-
action Objects. In: In Advances in Applied Ergonomics, pp. 300–305. USA
Publishing (1996)

[5] Bødker, S., Dindler, C., Iversen, O.S.: Tying Knots: Participatory Infrastruc-
turing at Work. Comput. Supported Coop. Work 26(1-2), 245–273 (2017).
DOI 10.1007/s10606-017-9268-y

[6] Bosch: Bosch’s IoT platform (2017). URL https://www.bosch-si.com/
de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.
html

[7] Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-
Driven UI Engineering of Web and Mobile Apps with IFML. The MK/OMG
press. Morgan Kaufmann (2014)

https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.bosch-si.com/de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://www.bosch-si.com/de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://www.bosch-si.com/de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.html

20 István Koren

[8] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdon-
ckt, J.: A Unifying Reference Framework for multi-target user interfaces. Inter-
acting with computers 15(3), 289–308 (2003). DOI 10.1016/S0953-5438(03)
00010-9

[9] Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and
Profiting from Technology. Harvard Business School Press, Boston, MA, USA
(2003)

[10] de Lange, P., Nicolaescu, P., Klamma, R., Koren, I.: DevOpsUse for Rapid
Training of Agile Practices Within Undergraduate and Startup Communities.
In: K. Verbert, M. Sharples, T. Klobučar (eds.) Adaptive and Adaptable Learn-
ing, Lecture Notes in Computer Science, vol. 9891, pp. 570–574. Springer
International Publishing, Cham (2016). DOI 10.1007/978-3-319-45153-4_65

[11] Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw 33(3),
94–100 (2016). DOI 10.1109/MS.2016.68

[12] Fowler, M., Highsmith, J.: The agile manifesto. Software Develop-
ment 9(8), 28–35 (2001). URL http://users.jyu.fi/~mieijala/
kandimateriaali/Agile-Manifesto.pdf

[13] Fowler, M., Lewis, J.: Microservices (2014). URL http://martinfowler.
com/articles/microservices.html

[14] Groen, E.C., Doerr, J., Adam, S.: Towards Crowd-Based Requirements Engi-
neering A Research Preview. In: S.A. Fricker, K. Schneider (eds.) Requirements
Engineering: Foundation for Software Quality, Lecture Notes in Computer Sci-
ence, vol. 9013, pp. 247–253. Springer International Publishing, Cham (2015).
DOI 10.1007/978-3-319-16101-3_16

[15] Ha, K., Pillai, P., Richter, W., Abe, Y., Satyanarayanan, M.: Just-in-Time Pro-
visioning for Cyber Foraging. In: Proceeding of the 11th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, pp. 153–166
(2013). DOI 10.1145/2462456.2464451

[16] Hanseth, O., Lundberg, N.: Designing Work Oriented Infrastructures. Com-
puter Supported Cooperative Work (CSCW) 10(3-4), 347–372 (2001). DOI
10.1023/A:1012727708439

[17] Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information
Systems Research. MIS Quarterly 28(1), 75–105 (2004). URL http://dl.
acm.org/citation.cfm?id=2017212.2017217

[18] Hippel, E.v.: Lead Users: A Source of Novel Product Concepts. Management
Science 32(7), 791–805 (1986). DOI 10.1287/mnsc.32.7.791

[19] IBM: Watson IoT Platform (2017). URL https://www.ibm.com/
internet-of-things/platform/watson-iot-platform/

[20] Idoine, C., Krensky, P., Brethenoux, E., Linden, A.: Magic Quadrant for Data
Science and Machine Learning Platforms (28.01.2019). URL https://www.
gartner.com/doc/reprints?id=1-65WC0O1&ct=190128&st=sb

[21] IFTTT Inc.: IFTTT (2018). URL https://ifttt.com/
[22] JS Foundation: Node-RED (2018). URL https://nodered.org/
[23] Keim, D.A., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melançon,

G.: Visual Analytics: Definition, Process, and Challenges. In: A. Kerren,

http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dl.acm.org/citation.cfm?id=2017212.2017217
http://dl.acm.org/citation.cfm?id=2017212.2017217
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://www.gartner.com/doc/reprints?id=1-65WC0O1&ct=190128&st=sb
https://www.gartner.com/doc/reprints?id=1-65WC0O1&ct=190128&st=sb
https://ifttt.com/
https://nodered.org/

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 21

J. Stasko, J.D. Fekete, C. North (eds.) Information Visualization, LNCS, vol.
4950, pp. 154–175. Springer Berlin / Heidelberg (2008). DOI 10.1007/
978-3-540-70956-5_7

[24] Khodadadi, F., Dastjerdi, A.V., Buyya, R.: Simurgh: A framework for effective
discovery, programming, and integration of services exposed in IoT. In: 2015
International Conference on Recent Advances in Internet of Things (RIoT), pp.
1–6 (2015). DOI 10.1109/RIOT.2015.7104910

[25] Klamma, R.: Community Learning Analytics – Challenges and Opportuni-
ties. In: J.F. Wang, R.W.H. Lau (eds.) Advances in Web-Based Learning:
ICWL 2013, Lecture Notes in Computer Science, vol. 8167, pp. 284–293.
Springer, Berlin (2013). DOI 10.1007/978-3-642-41175-5_29

[26] Koren, I.: DevOpsUse: Community-Driven Continuous Innovation of Web
Information Infrastructures. Ph.D. thesis, RWTH Aachen University (2020).
DOI 10.18154/RWTH-2020-06868

[27] Koren, I., Bavendiek, J., Klamma, R.: DireWolf Goes Pack Hunting: A Peer-to-
Peer Approach for Secure Low Latency Widget Distribution Using WebRTC.
In: S. Casteleyn, G. Rossi, M. Winckler (eds.) Web Engineering, LNCS, pp.
507–510. Springer International Publishing, Cham, Switzerland (2014). DOI
10.1007/978-3-319-08245-5_38

[28] Koren, I., Klamma, R.: The Direwolf Inside You: End User Development for
Heterogeneous Web of Things Appliances. In: A. Bozzon, P. Cudre-Maroux,
C. Pautasso (eds.) Web Engineering, Lecture Notes in Computer Science, vol.
9671, pp. 484–491. Springer International Publishing, Cham (2016). DOI
10.1007/978-3-319-38791-8_35

[29] Koren, I., Klamma, R.: Enabling visual community learning analytics with
Internet of Things devices. Computers in Human Behavior 89, 385–394 (2018).
DOI 10.1016/j.chb.2018.07.036

[30] Koren, I., Klamma, R., Jarke, M.: Direwolf Model Academy: An Extensible
Collaborative Modeling Framework on the Web. In: J. Michael, D. Bork (eds.)
Modellierung 2020 Short, Workshop and Tools & Demo Papers, pp. 213–216
(2020). URL http://ceur-ws.org/Vol-2542/MOD20-TuD5.pdf

[31] Kus, D.A., Koren, I., Klamma, R.: A Link Generator for Increasing the Utility
of OpenAPI-to-GraphQL Translations (2020). URL https://arxiv.org/
abs/2005.08708

[32] Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Indus-
trie 4.0. Wirtschaftsinformatik 56(4), 261–264 (2014). DOI 10.1007/
s11576-014-0424-4

[33] Ley, T., Cook, J., Dennerlein, S., Kravcik, M., Kunzmann, C., Pata, K., Purma,
J., Sandars, J., Santos, P., Schmidt, A., Al-Smadi, M., Trattner, C.: Scaling
informal learning at the workplace: A model and four designs from a large-
scale design-based research effort. British Journal of Educational Technology
45(6), 1036–1048 (2014). DOI 10.1111/bjet.12197

[34] Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An
Emerging Paradigm. In: H. Lieberman, F. Paternò, V. Wulf (eds.) End User

http://ceur-ws.org/Vol-2542/MOD20-TuD5.pdf
https://arxiv.org/abs/2005.08708
https://arxiv.org/abs/2005.08708

22 István Koren

Development, Human-Computer Interaction Series, vol. 9, pp. 1–8. Springer,
Dordrecht (2006). DOI 10.1007/1-4020-5386-X_1

[35] Marttila, S., Botero, A.: Infrastructuring for Cultural Commons. Comput. Sup-
ported Coop. Work 26(1-2), 97–133 (2017). DOI 10.1007/s10606-017-9273-1

[36] Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Lan-
guage for Web APIs and Services Mashups. In: B.J. Krämer, K.J. Lin,
P. Narasimhan (eds.) Service-Oriented Computing – ICSOC, Lecture Notes
in Computer Science, vol. 4749, pp. 13–26. Springer Berlin Heidelberg (2007).
DOI 10.1007/978-3-540-74974-5_2. URL http://dx.doi.org/10.1007/
978-3-540-74974-5_2

[37] Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace
Builder - A WYSIWYG Approach for Building Service-Based Applications.
In: B. Benatallah, F. Casati, G. Kappel, G. Rossi (eds.) Web Engineering,
Lecture Notes in Computer Science, vol. 6189, pp. 498–501. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-13911-6_37

[38] OpenAPI Initiative: The OpenAPI Specification: Version 3.0.2 (2018). URL
https://www.openapis.org

[39] Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic No-
tation for Specifying Task Models. In: S. Howard, J. Hammond, G. Lindgaard
(eds.) Human-Computer Interaction INTERACT ’97, pp. 362–369. Springer
US, Boston, MA (1997). DOI 10.1007/978-0-387-35175-9_58

[40] Pautasso, C., Zimmermann, O.: The Web as a Software Connector: Integration
Resting on Linked Resources. IEEE Software 35(1), 93–98 (2017). DOI
10.1109/MS.2017.4541049

[41] Pipek, V., Syrjänen, A.L.: Infrastructuring as Capturing In-Situ Design. In: 7th
Mediterranean Conference on Information Systems (2006)

[42] Pipek, V., Wulf, V.: Infrastructuring: Towards an Integrated Perspective on the
Design and Use of Information Technology. Journal of the Association for
Information Systems 10(5), 447–473 (2009)

[43] Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Tech-
niques. Springer, Heidelberg and New York (2010)

[44] Quix, C., Hai, R.: Data Lake. In: S. Sakr, A. Zomaya (eds.) Encyclopedia
of Big Data Technologies, pp. 1–8. Springer International Publishing, Cham
(2018). DOI 10.1007/978-3-319-63962-8{\textunderscore}7-1

[45] Renzel, D., Klamma, R. (eds.): Large-Scale Social Requirements Engineering,
vol. 2. IEEE Special Technical Community on Social Networking (IEEE
STCSN) (2014)

[46] Renzel, D., Koren, I., Klamma, R., Jarke, M.: Preparing Research Projects for
Sustainable Software Engineering in Society. In: Proceedings 2017 IEEE/ACM
39th IEEE International Conference on Software Engineering (ICSE) (2017).
DOI 10.1109/ICSE-SEIS.2017.4

[47] Sanders, E.B.N., Stappers, P.J.: Co-Creation and the New Landscapes of De-
sign. CoDesign 4(1), 5–18 (2008). DOI 10.1080/15710880701875068

http://dx.doi.org/10.1007/978-3-540-74974-5_2
http://dx.doi.org/10.1007/978-3-540-74974-5_2
https://www.openapis.org

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 23

[48] Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N.: The Case for VM-Based
Cloudlets in Mobile Computing. IEEE Pervasive Computing 8(4), 14–23
(2009). DOI 10.1109/MPRV.2009.82

[49] Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W.,
Amos, B.: Edge Analytics in the Internet of Things. IEEE Pervasive Computing
14(2), 24–31 (2015). DOI 10.1109/MPRV.2015.32

[50] Schuh, G., Potente, T., Wesch-Potente, C., Weber, A.R., Prote, J.P.: Collab-
oration Mechanisms to Increase Productivity in the Context of Industrie 4.0.
Procedia CIRP 19, 51–56 (2014). DOI 10.1016/j.procir.2014.05.016

[51] Star, S.L., Bowker, G.C.: How to Infrastructure. In: L.A. Lievrouw, S. Living-
stone (eds.) Handbook of New Media: Social Shaping and Consequences of
ICTs, pp. 151–162. SAGE Publications, Ltd, 1 Oliver’s Yard, 55 City Road Lon-
don EC1Y 1SP (2002). DOI 10.4135/9781848608245.n12

[52] Tuomi, I.: Internet, Innovation, and Open Source: Actors in the Network.
First Monday 6(1) (2001). DOI 10.5210/fm.v6i1.824. URL http://
firstmonday.org/ojs/index.php/fm/article/view/824/733

[53] Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Learn-
ing in doing. Cambridge University Press, Cambridge, UK (1998)

http://firstmonday.org/ojs/index.php/fm/article/view/824/733
http://firstmonday.org/ojs/index.php/fm/article/view/824/733

	DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering
	István Koren
	Introduction
	Motivation
	Central Hypothesis
	Research Background

	DevOpsUse Methodology
	Continuous Innovation
	Collaborative Modeling
	Monitoring
	Connecting the DevOpsUse Life Cycle

	Methodological and Technical Evaluation
	Technology Evolution
	Best Practice Guidelines
	Application in Industry 4.0

	Conclusion
	References
	References

