
A Standalone WebAssembly Development
Environment for the Internet of Things

István Koren[0000−0003−1350−6732]

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany
koren@pads.rwth-aachen.de

Abstract. In Industry 4.0, there is a growing demand to perform high-
performance and latency-sensitive computations at the edge. Increas-
ingly, machine data is not only collected but also processed and trans-
lated into actionable decisions influencing production parameters in real-
time. However, heterogeneous hardware in the Internet of Things pre-
vents the adoption of consistent development and deployment structures
as known from service containers. WebAssembly is a recent hardware-
agnostic bytecode format that is capable of running not only in the
browser, but also on microcontrollers and in cloud environments. In this
article, we argue that this web technology can have a real impact by lever-
aging tools and programming languages that web engineers are familiar
with. As a first step, we present a proof-of-concept integrated develop-
ment and deployment environment to execute WebAssembly modules on
microcontrollers. Its key feature is a built-in web server that provides a
self-contained browser-based IDE to directly develop, compile and flash
AssemblyScript code to a device. In this sense, the Web of Things will
unfold a streamlined development and deployment context for the ag-
ile and low-latency operationalization of adjustable data streaming and
action-oriented process adaptations for industrial devices.

Keywords: WebAssembly · Internet of Things · Industry 4.0.

1 Introduction

Digitalization of industrial assets comes with many promises like higher pro-
ductivity, less rejects and smaller lot sizes. For instance, recent developments in
the application of machine learning in the production context allow for data-
driven decisions like parameter tuning in order to obtain a desired quality in the
manufactured part. However, there are a number of challenges towards a fully
connected smart production. First, the asset-heavy manufacturing industry is
characterized by long-term investments with many legacy devices on the shop
floor; while state-of-the-art industrial assets are able to push data over protocols
like OPC-UA, many legacy machines only feature serial communication ports.
Even programmable logic controllers are often restricted to a proprietary pro-
gramming language that only specialized developers can work with. Furthermore,
many industrial processes are time-critical, thus parameter adaptions need to be

This is the author's preprint version of the paper appearing in Proceedings of the International Conference on Web Engineering 2021, Biarritz, France (to be published)© 2021



2 I. Koren

carried out within a narrow window. For instance, compensations for disruptions
in steel production must be made within a few milliseconds.

The concept of Retrofitting [10] refers to augmenting industrial assets with
computational equipment able to forward data from serial interfaces via modern
Internet of Things (IoT) protocols. It can be achieved by using microcontrollers,
industrial-grade versions of boards like Raspberry Pi, or specialized edge cloud
hardware. By bringing computation close to the devices, Retrofitting is there-
fore also useful for addressing latency issues. Overall, in the highly heterogeneous
system landscape of the shop floor, different computational hardware like pro-
prietary programmable logic controllers prevail together with custom modules.
Yet, following the idea of agile manufacturing, software on the edge underlies
frequent incremental changes [9]. To tackle this highly complex environment, a
development and deployment structure is required that can handle this hetero-
geneity, i.e. produces service components that run on microcontrollers, on edge
devices as well as in the cloud.

Over the last decade, containerization of microservices through technologies
like Docker achieved low coupling of heterogeneous technologies with clearly cut
functionalities. However, these containers are not lightweight enough to be run
on low-powered IoT devices. To this end, WebAssembly (WASM) is a recent
web standard. Originally, it was conceived for computationally intensive tasks
within browser clients that need near-native performance, of that the interpreted
JavaScript environment is not capable of, like image processing. Initiatives like
WASI (WebAssembly Systems Interface) aim to make system calls available to
WASM modules, making them a suitable platform to tackle the above challenges
on the shop floor. In this article, we present a proof-of-concept that allows to run
the same code on different hardware platforms. It features a built-in web server
that delivers a simple IDE to develop code, compile it to bytecode, and flash
it to the device. After its initialization, the binary code is capable of accessing
device in- and output pins, for instance, to forward data from the device, or
to directly change control parameters as the result of stripped-down machine
learning algorithms. While essentially powered by web technologies, this opens
many use cases, e.g. for the low-latency operationalization of real-time decisions.

This article is organized as follows. Section 2 motivates WebAssembly usage
in service-oriented architectures and discusses related work. Section 3 presents
the conceptual design and implementation of our proof-of concept. Section 4
discusses our findings, experiences and limitations. Finally, Section 5 concludes
the article with an outlook on future work.

2 Towards Code Mobility on the Web of Things

Microservices and the containerization paradigm introduced by technologies like
Docker and Kubernetes changed development and deployment structures in the
last decade. By running isolated software containers, processes are sandboxed
from each other, i.e., services cannot access each other’s memory. However, be-
cause of the large overhead of software containers, this approach is not feasible



A Standalone WebAssembly Development Environment for the IoT 3

WASM
Module WASM

Module

WASM
Module

WASM
Module

WASM
Module

Microcontroller Single-Board
Computer Edge Cloud Public Cloud

Fig. 1. Migration of Unmodified WebAssembly Modules From Edge to Cloud

for resource-constrained devices like single-board computers or even microcon-
trollers. Even though WebAssembly has only been introduced recently, there is
already a vast adoption on frontend and backend as it harmonizes well with the
serverless computing paradigm [3,6]. A curated list of use cases in the browser can
be found on the list of Awesome Wasm1. Besides, open source and commercial
offerings recognize the potential of WebAssembly for deploying functionalities
on the backend. Fastly Inc., one of the world’s largest edge cloud providers,
feature a dedicated WebAssembly runtime in their content delivery network.
WebAssembly has an inherent sandbox based on design decisions such as linear
memory management, ensuring that program code cannot break out its dedi-
cated memory addresses. Its bytecode format can be cross-compiled from various
programming languages and interpreted on platforms like IoT devices and the
cloud. The format is governed by an open alliance of industry and research part-
ners. For instance, AssemblyScript, a derivate of TypeScript, can be compiled
into WASM bytecode. TypeScript, in turn, is very similar to JavaScript, opening
access to a large number of web developers. It adds variable type declarations
while staying syntactically close to JavaScript. The compiled WebAssembly mod-
ules can move freely between different hardware architectures. We argue, that
it is therefore suited as code mobility [2] framework for small-scale functions in
the Web of Things, adopting principles of Liquid Web Applications [5] on the
backend. Our use case are deployments in the heterogeneous device landscape
of industrial machines as illustrated in Figure 1.

A number of researchers evaluated WebAssembly in serverless contexts out-
side the browser. Hall et al. run serverless functions and compare the execution
as WebAssembly with Docker containers [3]. In their system, a node.js context
executes WebAssembly modules. As primary advantage, they identify the ab-
sence of a large cold start penalty, as opposed to Docker. Tiwary et al. confirm
that spawning WebAssembly modules in a containerized environment suffers
from cold-start problems [11]. Murphy et al. compare the performance of differ-
ent native runtimes and find executing in a pure node.js environment to be the
fastest [6].

3 Proof-of-Concept WASM on the Edge

In this section, we discuss our proof-of-concept, by demonstrating the viability
of WASM modules on microcontrollers.

1 cf. https://github.com/mbasso/awesome-wasm

https://github.com/mbasso/awesome-wasm


4 I. Koren

https://wasmhost.local

Uploader

Code Editor

Microcontroller Router Development MachineDevelopment Machine

HTML IDE

Binary WASM
AssemblyScript

Compiler
(WASMmodule)

SPIFFS
HTML WASM

Webserver

WebAssembly
Interpreter

Host

Custom
Module

CPU
WiFi

Bluetooth
Device

Resources

Pe
ri
ph

er
al

In
te
rf
ac
es

Fig. 2. Overall System Architecture With Microcontroller and Development Laptop

3.1 Conceptual Design

The main conceptual idea is to provide a code execution layer on top of the
microcontroller firmware whose code is exchangeable. Our prototype consists of
three parts: the host environment, the runtime, as well as the development envi-
ronment. Figure 2 presents the basic architecture. On the left, the components
of a microcontroller are shown. On its top, SPIFFS (Serial Peripheral Interface
File System) is a lightweight system for storing files. Other peripheral interfaces
connect to external hardware over serial connections. The host is the firmware
that gets activated once the controller is booted. It connects to the WiFi net-
work and ensures availability via Bluetooth, if needed. Then, if a WebAssembly
module has been loaded, it gets instantiated and provided access to the device’s
in- and output pins. Any external dependency needs to be explicitly declared
beforehand to be available from within the module.

The host features a built-in web server. It delivers a simple HTML page
that has a code editor and a button. The HTML page references the external
compiler. Once the button is clicked, the compiler gets called. If the code can be
compiled without errors, the resulting binary WebAssembly module is uploaded
to the host environment on the microcontroller. For this purpose, the same web
server that provides the code editor also has an HTTP endpoint for accepting
and storing the binary module. After deployment, the microcontroller reboots
and executes the new module. In the next section, we discuss the implementation
and present the libraries used.

3.2 Microcontroller Implementation

As microcontroller, we chose an ESP32 board. The successor of the ESP8266 is
extremely popular for tiny IoT projects, and comes with a dual-core processor,
as well as WiFi and Bluetooth connectivity. Most of the development boards
come with 4 MB of flash size. We specifically used modules from TTGO and the
DEVKIT V1, which are in a price range between 4-9 Euros. The host firmware is



A Standalone WebAssembly Development Environment for the IoT 5

Listing 1.1. AssemblyScript Code Passing Sensor Value Every Third Time

1 // the pass function is imported from the host
2 declare function pass(data: f32): void;
3
4 // a global variable to store the number of cycles
5 let cycle:f32 = 0;
6
7 // the process function gets called from the host
8 export function process(a: f32): f32 {
9 cycle ++;

10 if (cycle == 3) { // only send value upstream on every third cycle
11 pass(a);
12 cycle = 0;
13 }
14 return a;
15 }
16
17 export function _start (): void {
18 while (true) { // keep module active
19 }
20 }

developed using the Arduino framework that is compatible to the native ESP de-
velopment kit. As WebAssembly interpreter, we decided to use the open source
Wasm3 library2. The web server is available via a Multicast DNS hostname
over the local WiFi network. It is powered by the ESPAsyncWebServer library3.
The WebAssembly module is developed with AssemblyScript4. It is a variant of
TypeScript that is popular in the web development community. The compiler
that translates AssemblyScript into the binary bytecode format is available as
WebAssembly module itself, it can thus be called from within an HTML5 ap-
plication context. We load it from the unpkg.com CDN to free as much memory
as possible for the application code. After its compilation, the WASM file is
uploaded via a HTTP multi-part form upload to the microcontroller. On the
microcontroller, it is saved within the flash that is formatted as SPI file system.

Listing 1.1 shows an example AssemblyScript code. It is a very basic module
with a process function, that forwards every third call to the pass method.
With declare (line 2) we import functions of the host into the module. In the
other direction, functions that are called from the host are marked with export

(line 8 and 17). The start function is called for initializing resources; it is also
responsible for keeping the module active (cf. the loop() function in Arduino
code). Due to the sandbox, it is not possible to call other environment functions
from within the developed module. Consequently, all external functions must be
declared at compile time. WebAssembly is using a linear memory management
with allocated memory locations. In our demo code, we import and export for
now only integer and float types, as the management of elaborate types involving
strings and objects is more complicated and error-prone.

2 cf. https://github.com/wasm3/wasm3
3 cf. https://github.com/me-no-dev/ESPAsyncWebServer
4 cf. https://www.assemblyscript.org/

https://github.com/wasm3/wasm3
https://github.com/me-no-dev/ESPAsyncWebServer
https://www.assemblyscript.org/


6 I. Koren

4 Applicability of WebAssembly on Microcontrollers

Our proof-of-concept allows to run user-contributed code on microcontrollers and
to exchange it during runtime. It brings advantages known from container-based
deployments to the Internet of Things with its resource-constrained devices and
variety of architectures. Our approach allows for the fast exchange of code, but
promises a certain level of security that is achieved through sandboxing. At the
same time, the standardized bytecode format allows to leverage various pro-
gramming languages. We are convinced that these characteristics make WASM
applicable for realizing the potential of the Web of Things in the industrial area.

Running replaceable user-contributed code on the edge, both in the browser
and as in our case on IoT devices, opens a number of security issues. Attack vec-
tors of running code in web browsers are discussed by Papadopoulos et al. [7].
The authors analyze the use of service workers for leveraging the processing
power of client devices, for instance to mine cryptocurrencies. Service workers
can execute code in the background, even if the user is not actively using the orig-
inating website. WebAssembly adds a controllable sandbox. However, through
the bytecode format, it is much harder to anticipate what code is running. Se-
curity measures therefore need to be undertaken, and access to the outer world
needs to be limited to the absolutely necessary.

4.1 Preliminary Evaluation

The firmware size of our host, including the WASM and server libraries is around
1.1 MB. On a typical ESP32 chip, this leaves around 2.9 MB of flash that has to
be shared with RAM and the SPI file system. The AssemblyScript compiler has
a size of around 1 MB; to save SPIFFS space, we load it as external dependency.
To compare the performance of our WebAssembly framework with running code
natively on the microcontroller, we ran evaluations that confirmed the perfor-
mance penalty described in Section 2. For instance, Jangda et al. calculated an
average decrease between 1.5x and 2x [4]. The authors note that WebAssembly
is still a rather new technology that is constantly optimized. The range of pos-
sible functionalities in the module versus natively on the host, however, is not
limited, as it depends on what device resources are linked into the module.

4.2 Limitations of the Prototype

Conceptually, our proof-of-concept shares limitations with WebAssembly. For
instance, it does not support threads, even though the ESP32 has a dual-core
processor. WebAssembly does not allow for hardware-specific abstractions [3] like
graphics card based matrix multiplication for machine learning algorithms. This
could be a limiting factor when running (even light-weight) machine learning
models. Moreover, researchers have highlighted issues inherent to WebAssembly,
like decreased memory safety when compiling from other languages [1].

Our built-in IDE currently only supports AssemblyScript. We are planning
to add further languages, like Python or Rust, depending on the availability



A Standalone WebAssembly Development Environment for the IoT 7

of compilers that can be executed in a browser context. Besides, modules can
already be written in various languages, as described in Section 2. For this,
the modules need to import and export the specified methods. Regarding data
exchange with the underlying host, we only support integer and float types.
Also, no security, like access control, is part of our firmware. We are evaluating
different mechanisms, like private-key signatures and identification via OpenID
Connect to overcome this. Specific to the ESP32, we experienced a challenge
with processor interrupts caused by timeouts. To overcome this, we regularly call
Arduino’s delay() function. In this regard, we do also not handle errors besides
catching exceptions and closing the module gracefully. To overcome this, we
are planning to introduce a fallback firmware. However, broken AssemblyScript
modules are detected at compile-time and thus cannot be flashed onto the device.

5 Conclusion and Outlook

Data-driven insights are currently driving the fourth industrial revolution. In-
dustrial assets are equipped with sensors that are able to provide fine-grained
properties in a high frequency. However, there are many challenges towards ag-
ile software development structures in this highly complex area. Heterogeneous
hardware architectures on the edge, from Arduino-driven microcontrollers up
to specialized edge hardware make it hard to uniformly develop functionalities.
Also, updating code is cumbersome and varies across boards. Following the ideas
of agile manufacturing [9], frequent updates are part of the approach.

Our proposal is to introduce a common development methodology and frame-
work powered by web technologies, that can run on edge-deployed hardware as
well as in the cloud. For this, WebAssembly is an ideal candidate. In this article,
we introduced a working proof-of-concept. It features a web server that delivers
a complete IDE to develop, compile and deploy new firmware modules within a
browser. In the future, we plan to support a peer-to-peer firmware propagation
between modules. On the ESP platform, we can use built-in functionalities that
build a mesh via Bluetooth or WiFi. Similarly, we want to enable a dynamic
context-dependent code mobility from IoT device to edge, cloud and vice versa.
For instance, if the processor load becomes to high, the device should be able
to move its module to a near-by edge device. Both peer-to-peer deployment and
context adaptation require higher security measures. This can be achieved by a
security layer, e.g., by signing flashed modules.

We are currently equipping industrial laboratories of the engineering depart-
ment at our university to trial industrial use cases. As described, agile updates
of developed modules can be leveraged not only for data collection, but also for
the operationalization of, e.g., business processes. We are convinced that faster
development and deployment methodologies can finally enable the age of the
Internet of Production [8], where data collection powers artificial intelligence
algorithms that in turn achieve action-oriented data insights.



8 I. Koren

Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC-
2023 Internet of Production - 390621612.

References

1. Disselkoen, C., Renner, J., Watt, C., Garfinkel, T., Levy, A., Stefan, D.:
Position Paper: Progressive Memory Safety for WebAssembly. In: Proceed-
ings of the 8th International Workshop on Hardware and Architectural Sup-
port for Security and Privacy. pp. 1–8. ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3337167.3337171

2. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility.
IEEE Transactions on Software Engineering 24(5), 342–361 (1998).
https://doi.org/10.1109/32.685258

3. Hall, A., Ramachandran, U.: An Execution Model for Serverless Functions at the
Edge. In: Landsiedel, O., Nahrstedt, K. (eds.) Proceedings of the International
Conference on Internet of Things Design and Implementation. pp. 225–236. ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3302505.3310084

4. Jangda, A., Powers, B., Berger, E.D., Guha, A.: Not So Fast: Analyzing the Per-
formance of WebAssembly vs. Native Code. In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). pp. 107–120. USENIX Association, Renton, WA
(2019), https://www.usenix.org/conference/atc19/presentation/jangda

5. Mikkonen, T., Systä, K., Pautasso, C.: Towards Liquid Web Applications. In: Cimi-
ano, P., Frasincar, F., Houben, G.J., Schwabe, D. (eds.) Engineering the Web in
the Big Data Era, Lecture Notes in Computer Science, vol. 9114, pp. 134–143.
Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-
319-19890-3 10

6. Murphy, S., Persaud, L., Martini, W., Bosshard, B.: On the Use of Web Assembly
in a Serverless Context. In: Paasivaara, M., Kruchten, P. (eds.) Agile Processes
in Software Engineering and Extreme Programming – Workshops, Lecture Notes
in Business Information Processing, vol. 396, pp. 141–145. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58858-8 15

7. Papadopoulos, P., Ilia, P., Polychronakis, M., Markatos, E.P., Ioannidis, S., Vasil-
iadis, G.: Master of Web Puppets: Abusing Web Browsers for Persistent and
Stealthy Computation, http://arxiv.org/pdf/1810.00464v1

8. Pennekamp, J., Glebke, R., Henze, M., Meisen, T., Quix, C., Hai, R., Gleim, L.,
Niemietz, P., Rudack, M., Knape, S., Epple, A., Trauth, D., Vroomen, U., Bergs, T.,
Brecher, C., Buhrig-Polaczek, A., Jarke, M., Wehrle, K.: Towards an Infrastructure
Enabling the Internet of Production. In: 2019 IEEE International Conference on
Industrial Cyber Physical Systems (ICPS). pp. 31–37. IEEE (06052019 - 09052019).
https://doi.org/10.1109/ICPHYS.2019.8780276

9. Schuh, G., Reuter, C., Prote, J.P., Brambring, F., Ays, J.: Increasing data integrity
for improving decision making in production planning and control. CIRP Annals
66(1), 425–428 (2017). https://doi.org/10.1016/j.cirp.2017.04.003

10. Stock, T., Seliger, G.: Opportunities of Sustainable Manufacturing in Industry 4.0.
Procedia CIRP 40, 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129

11. Tiwary, M., Mishra, P., Jain, S., Puthal, D.: Data Aware Web-Assembly Function
Placement. In: Seghrouchni, A.E.F., Sukthankar, G., Liu, T.Y., van Steen, M.
(eds.) Companion Proceedings of the Web Conference 2020. pp. 4–5. ACM, New
York, NY, USA (2020). https://doi.org/10.1145/3366424.3382670

https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1109/32.685258
https://doi.org/10.1145/3302505.3310084
https://www.usenix.org/conference/atc19/presentation/jangda
https://doi.org/10.1007/978-3-319-19890-3{_}10
https://doi.org/10.1007/978-3-319-19890-3{_}10
https://doi.org/10.1007/978-3-030-58858-8{_}15
http://arxiv.org/pdf/1810.00464v1
https://doi.org/10.1109/ICPHYS.2019.8780276
https://doi.org/10.1016/j.cirp.2017.04.003
https://doi.org/10.1016/j.procir.2016.01.129
https://doi.org/10.1145/3366424.3382670

	A Standalone WebAssembly Development Environment for the Internet of Things



