|This is the authors' preprint version of the article appearing in Journal of Web Engineering (2019). © 2019 River Publishers

OakStreaming: A Peer-to-Peer
Video Streaming Library

Istvdn Koren and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,

RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
E-mail: koren@dbis.rwth-aachen.de; klamma@dbis.rwth-aachen.de
http://dbis.rwth-aachen.de

Received XX October 2018;
Accepted XX February 2019

Abstract

Multimedia platforms dealing with movie streaming and video-based
short messages have increased the global Internet video traffic substan-
tially in the last couple of years. Over the same period, multimedia
on the Web has been standardized in terms of codecs and browser-
based JavaScript APIs. However, today the technological challenges
concerning the distribution of large video files are mainly tackled by
scaling up capacities in cloud data centers, or relying on content delivery
networks. Both approaches favor financially strong, large companies,
while independent video providers with highly demanded videos are
disadvantaged. Peer-to-peer streaming provides an alternative by shift-
ing the data streams to the clients. In this article, we conceptualize
different methods to move video delivery from centralized cloud infras-
tructures to end user devices. We discuss their strengths & weaknesses
and present design considerations. To exemplify a particular approach,
we showcase the implementation and evaluation of OakStreaming, our
system that streams videos peer-to-peer via WebTorrent in HTMLS.

Journal of Web Engineering, Vol. 17 6&7, 1-34.
doi: 10.13052/jwe1540-9589.1763
© 2019 River Publishers

This is the authors' preprint version of the article appearing in Journal of Web Engineering (2019). © 2019 River Publishers

2 I Koren and R. Klamma

Particularly, we offer Web video providers a library that has various
parameters, for instance to limit the bandwidth available for peer-to-
peer uploads. The resulting library is available as open source software
on GitHub.

Keywords: Web Engineering, Video Streaming, Peer-to-Peer,
WebRTC, WebTorrent.

1 Introduction

Global Internet video traffic has risen substantially in the last couple
of years. The continuous increase of connection speed has paved the
way for the success of multimedia-related businesses dealing with
movie streaming and video-based short messages. In 2016, around
73% of all consumer Internet traffic regarding bits transferred was
video traffic [3]. According to Cisco’s Visual Networking Index, this
number will most likely rise to 82% in 2021. Large Internet companies
like Facebook and Twitter entered the video business, trying to gain
a share of the consumer market dominated by YouTube [10]. There is
also a movement towards live video on social networking sites. As a
social phenomenon, digital natives prefer emergent and often short-
lived social networks like MusieallyTikTok and Snapehatinstagram
[intentional typography], whose business models include short video
“stories” that vanish after a certain time period. Besides entertainment
and social networking aspects, there is also huge potential in further
multimedia-based application cases like distant, collaborative work-
places or visual instructions using augmented reality. Users get more
acquainted with local multi-device streaming of videos from mobile
computers to the big screens of smart TVs due to new “second screen”
options. Simultaneously, video bitrates increase steadily. 4K with a
horizontal screen display resolution of around 4,000 pixels is now state-
of-the-art in home entertainment, but 8K is already on the horizon with
the recent HDMI specification [23].

Meanwhile, a shift of multimedia technologies on the Web
from proprietary plugins like Adobe Flash to a standardized set of
HTMLS5-related standards has taken place. Necessary preconditions for
cross-device multimedia on the Web were tackled, including licensing

OakStreaming: A Peer-to-Peer Video Streaming Library 3

issues around media codecs such as WebM and MPEG H.264. However,
technological challenges in distributing large video files today are
mainly addressed by relying on central cloud providers with large
storage capacity, so that the de facto video distribution model still
follows the client-server architecture. Video files are first uploaded from
client devices to a central cloud solution, before being downloaded or
streamed to clients. This entails a number of drawbacks. First, live
streaming takes a temporal indirection when routed over a server.
Second, it generates a high load on central points of the network
infrastructure. Last but not least, video creators must accept the terms
and conditions of the cloud provider to serve the video. Alhough content
delivery networks (CDNs) solve the first problem, they introduce a
further monetary burden, making it hard for small content providers
to reach the quality and availability of big providers. Thus, a possible
solution lies in shifting the load from the cloud back to the clients,
following general ideas of edge computing [20]. Peer-to-peer video
streaming is a promising principle to meet these challenges. Although
browser plugins like Adobe Flash and Akamai Netsession have accom-
plished this already several years go, they have not reached mainstream
adoption due to usability and security shortcomings. Today, two recent
group of Web standards are here to solve the challenges natively in
the browser. On the one hand, the Media Source Extensions control
feeding <audio> and <video> tags with multimedia data [25]. On the
other hand, Web Real-Time Communication (WebRTC) as a group of
protocols and APIs solve issues around cross-browser peer-to-peer data
streaming [1].

Streaming video files needs to tackle a number of challenges like
the following core requirements [7, 21]:

e Fast initial startup time: There should be no significant lag when
starting a stream.

e Random access: It should be possible to switch the position in the
timeline.

e Complying with device and network limitations: The resolution of
the target device and the bandwidth need to be respected.

Although technologies and initial prototypes are now available, in our
opinion the scientific literature lacks a comprehensive overview of

4 [Koren and R. Klamma

possible alternatives to server-centric video streaming systems and a
discussion of their costs and benefits. In this paper, we contribute con-
ceptual considerations and a prototype implementation of a framework
for peer-to-peer video streaming in native HTMLS. We elaborate on the
conceptual architecture of our solution, which is relying on a tracking
server. Concretely, we decided to use an approach using WebTorrent'.
Amongst other parameters, developers may specify a limit on the
amount of data each peer is allowed to upload to other peers, for keeping
a balance amongst the peers. The resulting library called OakStream-
ing is available as configurable and extensible open source solution,
enabling the further development with the help of the open source
community.

This article is organized as follows. After introducing related Web
technologies and academic work in Section 2, we present some func-
tional and non-functional requirements in Section 3. Section 4 discusses
different concepts for peer-to-peer multimedia streaming on the Web.
The resulting OakStreaming library that enables setting up browser-
based peer-to-peer video streams is presented in detail in Section 5 and
evaluated in Section 6. Section 7 concludes the paper with a discussion
and pointers to future work.

2 Related Work

This section introduces the technological background and standards
of video streaming on the Web and derives design considerations for
distributed approaches. We then present related work from academia
and industry that tackles the challenges of delivering video content
through peer-to-peer technologies.

2.1 Web Video Technologies
WebRTC refers to a set of HTMLS APIs that enable establishing
direct peer-to-peer connections between two or more Web browsers [1].

The data channel is a communication channel type of WebRTC which
enables any binary data to be exchanged between Web browsers. In

"https://webtorrent.io/

OakStreaming: A Peer-to-Peer Video Streaming Library 5

order to use the WebRTC data channel, a website does not need the
explicit agreement from the visitor, however the Web application needs
to be delivered over a secure HTTPS channel.

To establish a WebRTC connection, signaling data has to be
exchanged between the peers [1]. This includes the public IP addresses
of each peer and the local IP addresses, if the peers are located in the
same LAN. The data is typically exchanged with the help of a signaling
server that is reachable from both ends of the connection. When using
this approach, both peers connect to the signaling server and use it
as a relay for transferring their signaling data to the other peer. The
signaling data can also be transferred by other means. For instance,
the peer-to-peer WebRTC connection can be established by manually
typing in signaling data into an HTML form. Because of firewalls and
the functional principle of network address translation (NAT), direct
IP-based communication between peers is normally not possible on the
Web. Therefore, if any two peers are located in different local networks
and at least one peer is behind a NAT-enabled router, a so-called STUN
(Session Traversal Utilities for NAT) server is necessary to pass through
the router so that the WebRTC connection can be established.

The HTMLS <video> element was originally introduced to allow
playing videos without proprietary plugins. It has one or more
<source> children that specify media resources represented by URLs.
However, additional measures are required for further client-side
control of media streams in JavaScript. The W3C Media Source
Extensions specification enables JavaScript to send byte streams to
media codecs [25]. Web browsers that support this specification enable
JavaScript code to “feed” a HTMLS5 <video> or <audio> element with
a video/audio stream piecewise. It enables the implementation of client-
side prefetching, buffering and adaptive bit rate for streaming media
in JavaScript.

2.2 Client-Server vs. Content Delivery Networks

High server load and world-wide latency challenges are usually tackled
with Content Delivery Networks (CDNs). Figure 1 compares client-
server and CDN architectures. A CDN consists of a world-wide network

6 I Koren and R. Klamma

Web Server Web Server

[o T

Web App

\
\ Cache
<4

4 \
4 \ ’
4 \ 4 ’ \
4 \ / ’ \
’ \ , ’ \
4 \ / ’ AY
/ \ / / \
I v P ¥ P
ooo ooo
|| ooo nouul I ooo 0000
ooo ooao i ooo 0ooo |i
— o 000 [S—— o 000
E] ooo —‘-"El ooo
TV Client Mobile Client Tablet Client TV Client Mobile Client Tablet Client
(a) Client-Server (b) Content Delivery Network

Figure 1 Comparison of conventional video streaming architectures.

of caches that replicate content of a main server. Requests to the central
identity are then redirected to the nearest cache [2]. A commercial CDN
provider usually delivers content for many different content providers.
For the Web user, CDNSs are transparent; the content provider, however,
usually needs to pay fees.

Coolstreaming and Akamai NetSession are two representatives of
systems that relay the caching to the peers. Lin et al. described and
evaluated the peer-assisted CDN Akamai NetSession [15]. The peers
of the network need to run instances of the NetSession Interface
application. By including a library into third-party applications like
download managers, they can also benefit from the network. Running
as part of a download manager, a NetSession Interface instance first
tries to download the fragments of a file from other peers of the
NetSession network. Fragments that cannot be received fast enough
are downloaded from dedicated servers of the CDN. Additionally, a
running NetSession Interface uploads already downloaded fragments
to other NetSession Interface instances. For both systems to work, a
client-side software needs to be installed on the local operating system,
possibly adding security vulnerabilities. Depending on the number of

OakStreaming: A Peer-to-Peer Video Streaming Library T

devices employed by a user, different platform-specific versions must
be manually downloaded and configured.

2.3 WebRTC-Based Prototypes

Hogqvist et al. describe and evaluate Hive.js [19], a WebRTC-based,
peer-assisted video streaming solution. A central tracking server keeps
track which player instances are currently connected. Their software
then builds a random graph between all viewers of a video. Periodically,
each peer selects one of its WebRTC connections and terminates it.
Immediately after that, the peer connects to a new randomly chosen
peer from a list of potential new neighbors. This list is provided by the
tracking server. An evaluation has shown that their system performs
well for peer-to-peer streaming with 30 or less peers. Hive.js does not
check data integrity of downloaded video fragments.

Nogueira Barbosa et al. describe an implementation of a WebRTC-
based, peer-assisted video streaming solution [12]. The system uses an
ISP location and geolocation awareness concept to build clusters of
nodes. Each peer in their system belongs to a WebRTC cluster. Peers
who belong to the same provider’s network and who are geographically
close are preferably assigned to the same cluster. All peers in the
same cluster are directly connected to each other through WebRTC
connections. If a peer needs a media fragment, it first tries to receive it
via broadcasting the request within its cluster. If the peer is not able to
receive a desired media fragment from the peer-to-peer network in time,
it requests it from a CDN. The authors’ experiments demonstrate that
their implementation leads to high fluctuations regarding the percentage
of fragments that are delivered through the peer-to-peer network.

Meyn describes another WebRTC-based, peer-assisted video
streaming system [8]. Due to the fact that at the time of conceptualiza-
tion no browser vendor had implemented support for the WebRTC data
channel, no prototype was created. Nurminen et al. describe a WebRTC-
based, peer-to-peer video streaming system [13]. Similarly, no working
WebRTC data channel was available on mainstream browsers. Instead,
the authors evaluated the performance of the MD35 hashing algorithm
that is used to validate data integrity of media fragments that were
delivered by peers.

8 I Koren and R. Klamma

Finally, in addition to the related work mentioned above that deals
with peer-to-peer video streaming systems similar to our goals, we
would like to highlight work that examines general quality aspects
of WebRTC-based video streaming in the browser. In particular, the
MONROE? platform, a European testbed for such experiments, can be
mentioned. Moulay et al. use it to analyze the applicability of WebRTC
in mobile scenarios [11]. The results are consistently positive, but the
authors mention quality leaps in mobile networks due to insufficient
network coverage. On the same platform Sulema et al. analyzed the
Quality of Experience [24]. They come to the conclusion that the video
transmission quality of WebRTC is not inferior to that of platform-
specific commercial solutions.

2.4 Delivery Models

Video content delivery as it is currently implemented on various popular
websites like YouTube, Facebook and Vimeo follows a client-server
model. Users upload the video to a central cloud repository. When other
users retrieve the video’s website, the provider embeds the URL of the
video in the returned HTML page, typically within a <video> tag. The
browser then requests the video from the server over the specified URL.
After that, the server initializes the video stream to the client. In this
scenario, the video is always delivered from the server to the client.
No data is transferred between any two clients. Although Web caches
such as CDNs can reduce the load on the main server, even if a video is
watched at the same time on two different client devices side by side,
two separate connections to the server are established and the data is
downloaded twice. The limitation of the number of requests a server
can answer is a significant bottleneck of the client-server architecture.
However, traditional client-server systems can easily ensure content
integrity and reliable accounting.

By contrast, the advantage of peer-to-peer systems compared to
client-server models is that the load is decentralized onto the clients.
Peers are connected to each other and ideally retrieve video frag-
ments from neighbor peers. The disadvantages of peer-to-peer systems

Zhttps://www.monroe-project.eu/

OakStreaming: A Peer-to-Peer Video Streaming Library 9

compared to sufficiently equipped client-server systems are longer
initial start-up times as the video source has to be negotiated initially,
and more unwanted stuttering or stalling of video play due to the
disappearance of other peers during the playback [6]. In a peer-to-peer
network, the time span between connecting and receiving the first byte
of a media fragment is relatively large; getting the first fragment from
a Web server or CDN is significantly faster, as the client has a fixed
endpoint with which it can negotiate the byte stream.

Peer-assisted video streaming is another delivery method. It is a
hybrid model that combines the advantages of client-server like high
availability with the load distribution of pure peer-to-peer system
[6, 12, 15]. In a peer-assisted streaming system, if a peer cannot receive
a desired media fragment from the peer-to-peer network in time, it
downloads it from the source of the media stream, e.g. from a server, like
Hive.js does [19]. The short initial start-up times are possible because
in this kind of hybrid solution the first fragments of media content can
be downloaded from the CDN or Web server to enable the start of the
video playback as soon as possible. This fallback solution guarantees
that all media fragments are received by each peer early enough to
avoid stuttering or stalling of video playback. Figure 2 compares both
peer-to-peer and peer-assisted streaming architectures.

Tablet Client Web Server

=
200

0000
_» | oooo i E
000 Web App

4
1
- /
&]
—rllw !
3
N !
N, 1
N, 1
1}
1}
]
1
v

Video o

\
TV Client N\

Video

a
| | Mobile Client 0000 ::
0000 |
==fldgeccccccccaaaaa +»||coo

Video

Mobile Client

TV Client Tablet Client

(a) Peer-to-Peer (b) Peer-Assisted

Figure 2 Comparison of peer-to-peer video streaming architectures.

10 I Koren and R. Klamma

3 Requirements for Peer-to-Peer Video Delivery

Considering the available body of research literature described in
Section 2, we present a number of functional and non-functional
requirements for our system in the following. As of today, all browsers
including the initially hesitant Apple Safari support the WebRTC or
similar RTC group of standards for peer-to-peer connections on the
Web?. The Edge browser by Microsoft currently exposes the Object
RTC API with similar capabilities [9]; thus the findings of our system
should be easily transferable.

Generally, we want to enable streaming videos in a peer-to-peer
manner between instances of different browsers. Random access of
playback positions should be allowed to enable users to jump freely
during the stream. There are different strategies for distributing the
video content amongst the peers. Rarest piece selection means that those
fragments of a video get requested first, that are estimated as rarest in the
network. Offloading streams from the cloud to a peer-to-peer network
naturally shifts the load onto the clients. We therefore envision having
a fair distribution of the load amongst the peers. A ratio defining the
proportion of download and upload should be configurable in addition.
For example, it is more reasonable to stream from a device that is
connected to a stable wired connection than it is from a battery-powered
mobile device in a slow mobile network. The respective configuration
parameter is the peer upload limit. Other parameters include the buffer
size, which is the length of seconds of video playback we cache to
enable a seamless playback of the video file. Finally, the system to
be developed should generate and expose statistical values for further
tuning the system. For example, the amount of video data downloaded
from other peers and the amount of uploaded data could be logged. The
connection to other peers should either be mediated by a central server
or be established via a manual connection.

Finally, non-functional requirements include the ability to cope with
high fluctuations of the available bandwidth. Also, the system should
be quite resistant to continuous arrival and departure of peers, and
accommodate some redundancy. This means that the video stream

3https://caniuse.com/#feat=rtcpeerconnection

OakStreaming: A Peer-to-Peer Video Streaming Library 11

must not slow down or stop completely if a peer leaves the network.
However, we assume a stable connection of the seeding peer. The initial
availability of the video thereby depends on the seeder’s bandwidth.
We particularly stress the importance of a comprehensible and easy-to-
understand documentation of the source code, as the results should be
available as open source solution to foster further development through
the wider open source community.

Table 1 compares the mentioned related work and discusses proper-
ties that the systems fulfill or not. We additionally added the following
commercial solutions to the matrix: StreamRoot*, Viblast®, Peer5° and
Swarmify’. To the best of our knowledge, there is no major conceptual
difference between these four solutions. All of them use a tracking
server, advertising that their solution is effective in choosing the best

Table 1 Comparison of WebRTC-Based Video Streaming Frameworks

Framework

Nogueira
System Hive.js Barbosa Meyn Rhinow
Property [19] etal [12] etal.[8] [18] StreamRoot Viblast Peer5 Swarmify OakStreaming
Working [[] O o o o © o [
implementation
Detection of O O [] O [] [) [) o o
poisoned
fragments
Small scale ([) O - — [] [) [) o o
efficiency
Intelligent peer O o O O ([
selection
Upload limit O O O [— — _)
per peer
Open source o [] O O O (@) O ([
(code/
algorithm)
@ = provides property; OO = does not provide property; — = unknown

“https://streamroot.io/
Shttps://www.viblast.com/
Ohttps://www.peerS.com/
Thttps://swarmify.com/

12 I Koren and R. Klamma

peers for data sharing based on geography and network topology. The
four systems use WebRTC signaling servers due to the characteristics
of the protocol. The common factor between these companies is that
the algorithms are not available open source.

Out of the academic solutions, all but one have a working implemen-
tation. None are able to effectively capping the outgoing connections
after a video has been entirely downloaded by limiting the upload per
peer. In our OakStreaming library, we aim to fulfill all these properties.

4 Conceptual Design

To create a Web-based peer-to-peer solution for distributing video
data, we evaluated three different architectures: a synchronized look-up
table, a distributed hash table and a tracking server. In this section, we
share our reflections and discuss their implications.

4.1 Synchronized Look-Up Table

The goal of a synchronized look-up table concept is to collect all avail-
able information about the current playback and buffer state of each
peer in the network. In this approach, peers publish which fragments
they have cached already. Peers use this information to update their
own look-up tables where they keep track of the current overall video
distribution state. A simple algorithm could now ask all peers who
have already loaded a required fragment to pass the fragment. Another
possibility is to send out a message to all other peers together with
an urgency indicator calculated out of the temporal distance of the
currently played fragment. Other peers then react to the message and
offer the needed fragment. As a consequence, there is a large number of
messages that need to be broadcasted to all participants, thus any naive
algorithm would not be scalable to a large number of peers. A solution
could be to multicast messages to a subset of peers. This practice of
limited information exchange proved efficient in the WebRTC-based
peer-to-peer video streaming system Hive.js [19]. It uses a so-called
tracking server to create a random graph between peers. Each peer only

OakStreaming: A Peer-to-Peer Video Streaming Library 13

queries peers for fragments to which a direct peer-to-peer connection
already exists.

4.2 Distributed Hash Table

The main aim of a distributed hash table (DHT) concept is to make
finding a peer which can deliver the desired media fragment possible,
reliable and efficient without a need for a central coordination node.
Distributed hash tables are decentralized distributed systems which
provide alook-up service for key-value pairs [17]. DHTs have a network
structure consisting of nodes and connections between these nodes. The
look-up functionality of a DHT gets as input an arbitrary key out of
a defined key space, and outputs the corresponding value. Each key
is (temporarily) assigned to a network node and any participant can
retrieve the corresponding value by sending a query message into the
DHT network which then gets routed to a node that got assigned this
key. Responsibility for the key space is distributed among all nodes
of the network in such a way that the quality of service provided by
the DHT is robust against continuous node arrivals, departures and
failures. Moreover, DHTs do not have a single-point of failure, which
enables peer-to-peer video streaming systems that use a DHT to be
fairly safe against total failures. A popular DHT algorithm and protocol
is Chord [22]. Every node of a Chord network has to maintain not more
than O(logn) connections to other nodes of the network, whereby n
is the number of nodes of the DHT. Chord’s connection layout and
routing algorithm make it possible to route to an arbitrary node of the
DHT in O(logn) hops, whereby n again is the number of nodes of
the DHT. Using the key-value storage functionality of DHTS, it can be
dynamically stored and retrieved which peer can deliver which video
fragments. The mentioned properties of Chord make it possible to find a
peer that provides a desired media fragment in an efficient and scalable
way. Most DHT concepts have similar properties like Chord, making
them attractive as a basis for peer-to-peer video streaming systems.

14 I Koren and R. Klamma

4.3 Tracking Server

Another possible solution to implement a peer-to-peer video streaming
system is to connect every peer to a central tracking server that stays
in contact with each peer to keep an overview of the network state.
No actual video data is transferred from or to a tracking server. For
performance reasons, the tracking server could observe, (a) which peer
needs which media fragment in the next few seconds, and (b) how
reliable each peer has been in the last seconds. On the one hand,
a tracking server may calculate which peer should best send which
media fragments to which other peer and then send the corresponding
orders to the peers. On the other hand, it can also easily organize
which peer connects to which peer and let the peers send requests
for media fragments to other peers. The latter approach highly reduces
organizational efforts of the tracking server and therefore significantly
improves the scalability. In [12] as well as in [19], this tracking
server approach has proven successful. Peer-to-peer video streaming
concepts based on tracking servers are tried and tested, which is shown
by the fact that every WebRTC-based, peer-to-peer video streaming
implementation presented in Section 2.3 uses a tracking server. An
obvious disadvantage of the tracking server concept compared to the
two aforementioned main concepts is that the tracking server is a single
point of failure. When the tracking server stops working, no peer can
find new peers to connect to.

A torrent tracker is a special kind of tracking server. The torrent
concept works with torrent files each of which groups other files into
fragments and identify them by cryptographic hash values. Further-
more, it lists the size (in bytes) of the fragments. Moreover, a torrent file
optionally contains additional information such as one or more URLSs to
torrent trackers. Anyone who knows the hash value of the entire torrent
file can request direct peer-to-peer connections from tracking servers
to peers that want to exchange fragments of that file. Torrent trackers,
additionally, enable to build up peer-to-peer connections between two
peers that are interested in the same torrent file, taking the role of a
signaling server. The protocol defines how peers request file fragments
from each other. The set of peers with whom a peer shares a direct
peer-to-peer connection is called the swarm instance of the peer. Peers

OakStreaming: A Peer-to-Peer Video Streaming Library 15

only request file fragments from peers with whom they have already
established a peer-to-peer connection. A torrent file can be tracked by
multiple tracking servers. With the hash value contained in the torrent
file, any peer can check the integrity of received fragments.

4.4 Discussion and Concept

The preceding discussion of possible concepts for the planned peer-
to-peer system revealed that the concept of a synchronized look-up
table scales significantly worse than DHT or a tracking server concept.
Related work shows that tracking server concepts are quite well studied
and work reasonably. DHTSs, on the other hand, do not have a single
point of failure and new peers only need one connection to any node
of the DHT to enter the DHT network. Therefore, using a DHT seems
to be a viable solution. Unfortunately, to the best of our knowledge
there is no solid DHT implementation that runs in the browser without
a plugin; developing a new one was out of the scope of this work.

Web Server Torrent Tracker
1 e BE = —
= S R == o
Video Torrent File Web App Peer Directory Signaling
~ 4
~, ’
N ,
N o &
@ ~ % ®
~_ Fragment 1 L
- g™ -~
b BRI
B &8 S L’
o, &= N "
Fragment 1 g S e
P y \\—'(’
Ko l’ "\
P L .
L — ’I \\
Fragment 2 e SN
, .
I’ \\
/” \‘\
’1 \‘
- ~
® .- ~
l’ \\
- N
r’ ‘\
L . v
v 7

———

Iy
©@

Peer 1 Frag}nént 2 Peer 2

Figure 3 Overview of proposed architecture and video fragment exchange.

16 I Koren and R. Klamma

In the following, we therefore present our solution based on a
torrent tracker, named OakStreaming. Figure 3 shows the architecture
of our system including its three main parts: the Web server delivering
the initial Web application including the OakStreaming client-side
library, the WebTorrent tracker responsible for sharing video fragment
locations, and the peers interested in watching the video. First, peer 1
retrieves the Web application and the initial video fragments from the
Web server (1). The server also keeps a torrent file which includes
information about the fragments of the video. The client then announces
the availability of fragments to the torrent tracker (2). If a second peer
connects to the system by retrieving the Web application (3), subsequent
fragments are already available on the first peer. Therefore, the torrent
tracker announces the availability of fragment 2 to the second peer
(4), which then starts a peer-to-peer connection to the first peer (5). The
torrent tracker is also responsible for negotiating the direct peer-to-peer
data channel between the peers (in the signaling phase of WebRTC).

The example above showed the simplest case for retrieving video
from the peer-to-peer network. We additionally include several strate-
gies for efficient data transfer. For instance, various parameters can
be set to limit the amount of uploaded data from a peer; in the
example above, the second peer could have already retrieved the
first fragment from the peer-to-peer network. Alternatively, the video
file can also be obtained from a participating peer. We provide two
strategies for downloading video fragments. The first, sequential-piece-
selection, downloads fragments sequentially based on the timeline of
the video. The second strategy, rarest-piece-selection, first retrieves
those fragments, that are most needed throughout the entire peer-to-
peer network. The concrete library methods and their parameters are
explained in the next section.

5 OakStreaming Peer-to-Peer Video Streaming Library

In this section, the implementation of the video streaming framework
is presented. The system consists of a WebTorrent tracker, a Web server
and OakStreaming instances. The OakStreaming instances run on the
devices of the viewers.

OakStreaming: A Peer-to-Peer Video Streaming Library 17

The implementation is based on the WebTorrent JavaScript library. It
is an adaptation of the BitTorrent protocol for the Web, using WebRTC
connections for exchanging data fragments. We extended its function-
ality significantly by introducing additional parameters targeting video
streams. The OakStreaming library has been developed as a Node.js
module which is turned into a Web browser compatible version via the
Browserify® bundler. The Node.js module only exports a single object
which is the constructor to create OakStreaming instances; it is global to
the browser window’s namespace. An OakStreaming instance provides
several public methods for the library user.

5.1 Initiating a Stream

The createStream(callback, videoFile, options) method
expects one required and two optional parameters. The required
parameter is a callback function which gets called with a previously
instantiated StreamTicket object that contains all the streaming prop-
erties. The first optional parameter is the video file which is handed
over as a W3C File object. The second optional parameter contains
options for the streaming process. If a video file gets handed over to
the createStream method, it seeds this video file to the WebTorrent
network. In this case, additional streaming information is entered
through the options argument.

5.2 Receiving a Stream

Most logic of our OakStreaming library is hidden behind the receive
Stream (streamTicket, callback, capSeeding) method. The
required streamTicket argument expects a StreamTicket object
containing peer and Web server connection information. An Oak-
Streaming client can download a video from a Web server and from
peers of the WebTorrent network in parallel. The callback function
gets called upon successful connection. The capSeeding boolean
parameter defines whether upload to other peers should be terminated
once the video is fully downloaded locally. To be able to play back

8http://browserify.org/

18 I Koren and R. Klamma

all common video formats, each peer repacks received media frag-
ments on-the-fly by using a JavaScript module called videostream®.
A videostream object repacks media fragments and puts them into a
source buffer to be played back by a HTMLS <video> element.

As soon as the WebTorrent instance has processed a torrent file
and found peers, it starts downloading the video in the background
according to the rarest-piece-selection strategy. The torrent tracker also
exchanges the signaling data amongst the peers.

Byte range requests can be conducted by calling the createRead
Stream() method of the WebTorrent API. This method returns a
readable stream object which can be used to (partially) read the
requested byte range even if it has not been downloaded completely
yet. File data is made available by the readable stream as soon as
it is received. If the byte range request should not span the entire
file, the range can be specified through an argument; the start and
end properties are inclusive. Byte range requests which were created
from calls to createReadStream are fetched as fast as possible and
in sequential order from the WebTorrent network. The rarest-piece-
selection fragment downloading, as initialized by the creation of a
WebTorrent instance, is suspended as long as a stream returned by
createReadStream has not yet received every byte out of its byte
range request.

So far we have discussed the ability to download the video to be
streamed as referenced in an existing torrent file hosted on a Web
server. However, we also provide the possibility to initiate the streaming
of a video file from a participating peer by creating a new torrent
file. Figure 4 shows the sequence of messages sent around between
OakStreaming peers and the torrent tracker, in the case that a peer
intends to stream a local video file to other clients. First, a torrent file is
created on the first peer by calling the library with a local video file. The
library then registers the peer as seeder of the video file. To notify the
second peer about the availability of the file, a StreamTicket including
the torrent file is sent to the second peer. The second peer then queries
the tracker together with its signaling data. It is forwarded to the first

“https://github.com/jhiesey/videostream

OakStreaming: A Peer-to-Peer Video Streaming Library 19

|

file
input

create

| |

| |

| I

I I

I |

| I
torrent I I

| |

|

|

|

I

file register as seeder |

fragment request,
signaling data

EEk=k=
o

StreamTicket

Peer 2 signaling data

\ 4
— -

signaling data

4

o Peer 1 signaling data .
l

[
|
[
[
IA
I‘
[
[
|

stream negotiation

|
|
) |
first fragment |
| |
| | |

Figure 4 Establishing an OakStreaming peer-to-peer session.

peer, asking for its signaling data in turn. After the first peer’s signaling
data is presented to peer 2, both start a WebRTC stream negotiation
process. Finally, the first fragment of the video is transfered from
peer 1 to peer 2.

Listing 1 shows the exemplary usage of the OakStreaming library
within an HTMLS Web page, implementing the sequence described
above. Note, that this is pseudo-code, and no sanity checks or exception
handlers are included. The library is loaded as a JavaScript module
on line 4. Line 7 shows a file <input> field, with the event handler
being called as soon as the user selects a file in the system dialog. In
line 8, a standard HTMLS <video> tag is shown. In the <script>
tag, first the library is loaded. The event handler on line 13 is called
once a video file is loaded on peer 1. Therein, a configuration object
is created that includes a Web server for peer-assisted delivery and

20 I Koren and R. Klamma

1 <!doctype html>

2 <html>

3 <head>

4 <script type="module" src="oakstreaming.js"></script>
5 </head>

6 <body>

7 <input type="file" onchange="handleFiles(this.files)">
8 <video id="video"></video>

9

<script>
10 let oakStreaming = new OakStreaming();
1
12 // code ezecuted at Peer 1
13 function handleFiles(files) {
14 let config = {web_server_URL: 'localhost:8080',
15 webTorrent_trackers: ['ws://localhost:8085']};
16 oakStreaming.create_stream(files[0],
17 config,
18 streamInfo => {
19 // share stream information with other peers
20 notifyPeers(streamInfo) ;
21 B;
2 }
23
2 // code exzecuted at Peer 2
25 function handleNotification(streamInfo) {
26 oakStreaming.receive_stream(streamInfo,
27 document . getElementById('video'),
28 _=>A
29 // all video data has been received
30 b
31 }
32 </script>
33 </body>
34 </html>

Listing 1 HTMLS5 pseudo-code of an OakStreaming library client.

an initial WebTorrent tracker URL. Then, the stream is created with
the respective OakStreaming method. The first argument is the File
object returned from the <input> field, the second is the configuration,
the third is a callback function. The latter is called, once the torrent

OakStreaming: A Peer-to-Peer Video Streaming Library 21

file has been created. In this example, we call the fictional method
notifyPeers(streamInfo) that sends the stream information to
remote peers. It informs peer 2 via the function on line 25. It receives the
same stream info property previously supplied in the callback method.
To start the stream to the local <video> tag, again an OakStreaming
method is involved.

The library allows to log various parameters of the stream. These
include the overall number of bytes downloaded or uploaded from other
peers, as well as the ratio of bytes downloaded from a peer-assisting
server vs. the bytes retrieved from other peers.

6 Evaluation

The evaluation of our library is divided into a technical analysis
and a user study. In the technical part, we measured how the three
implemented features added on top of the WebTorrent library affected
the video streaming. In the user evaluation, we asked seven Web
developers to use the OakStreaming API and give feedback regarding
the usability of the library, its documentation and peer-to-peer video
streaming in general.

6.1 Technical Evaluation

In order to test how well the implemented system is able to organize
peer-to-peer streaming, several tests have been conducted with up
to eight peers. The tests were run on a middle-end laptop running
the Windows 10 operating system and the Chrome browser using
the Blink browser engine. Each test was conducted with one seeding
OakStreaming instance and 2, 4 or 8 OakStreaming instances which
emulated viewers of the video. The video used was a three minute
high definition (HD) video that comprised 106 Megabytes. At the
start of each test, each OakStreaming instance established a Web-
Socket connection to a WebTorrent tracker. As implemented in the
WebTorrent library, the tracker automatically initializes the WebRTC
connection between OakStreaming instances. With two WebTorrent
instances connected, they can exchange video fragments. We have

22 I Koren and R. Klamma

found that there are a number of factors that cause a delay of up to a
few seconds in the initialization phase of the stream over WebTorrent.
The process of querying a neighbor for video fragments could take
a significant amount of time, even if the peer-to-peer connection had
already been established. Moreover, a peer can only receive file data
from its neighbors of fragments whose size is specified during creation
of the torrent. These circumstances increase the time from the moment
a peer receives a chunk of video data to the moment it serves the
received chunk to the viewer. The OakStreaming library uses the
default hash value calculation algorithm of the WebTorrent library
for the fragment. Additionally, after a WebRTC connection between
two peers has been established, the WebTorrent protocol needs time to
initialize the neighborhood conditions and exchange information which
fragments which peer can deliver. Because of the delays, the emulated
viewers were started with a random time offset. First, an interval from
0 to 10 seconds was chosen. Using this interval, the average amount
of video data that the viewers delivered to each other was relatively
low. Therefore, several interval sizes were tested. Besides O to 10, the
checked interval sizes were 0 to 20, 0 to 30 and 0 to 60. When using 0 to
60 as time offset interval, most data was transferred between emulated
viewers compared to the other three; it was therefore chosen as the
offset value for all test runs.

As a result, our tests showed that a lower threshold for the
video playback buffer before the OakStreaming client switches from
sequential-piece-selection to rarest-piece-selection leads to a higher
overall download time. This correlation was expected and confirms the
usefulness of the parameter, as with a longer sequential setting, rare
fragments are prioritized lower, possibly leading to bottlenecks with
video progression. Depending on the scenario, different values may be
useful.

We also tested pure peer-to-peer delivery versus peer-assisted deliv-
ery regarding the average time the playback was stalled. Figure 5 shows
a comparison of pure peer-to-peer and peer-assisted streaming in regard
to the total amount the video was stalled, as an average of multiple test
runs. As expected, peer-assisted delivery significantly reduces stalling

OakStreaming: A Peer-to-Peer Video Streaming Library 23

N w
& 8
o o

g
o

-
(%
o
o

Miliseconds playback was stalled

—

1000 t
3 _
500 —
0
2 4 8
Number of Peers
—e—Purely Peer-to-Peer Peer-assisted

Figure 5 Peer-to-peer vs. peer-assisted streaming.

time; here, video playback was only interrupted during initial start-up
(around 600 ms).

The results of the technical evaluation clearly indicate that peer-
assisted delivery and automatic switching between sequential-piece-
selection and rarest-piece-selection enhance the overall quality of
service of the peer-to-peer video streaming system, when taking the
whole network into consideration. When the peer-to-peer network con-
sisted out of two peers, the average start-up time for pure peer-to-peer
streaming was 1086 milliseconds. In case of peer-assisted streaming
this number went down to 667 milliseconds. Measurements with four
peers in a pure peer-to-peer environment resulted in an average start-up
time of 936 milliseconds. In case of peer-assisted streaming this number
went down to 695 milliseconds. Overall, we are convinced that for the
discussed use cases, the added delay of around 400 ms is acceptable.
In conclusion, we can say that the applicability of the library depends
very much on the usage scenario. For a comprehensive discussion of
the implications for various application scenarios, see Section 7.1.

24 I Koren and R. Klamma

6.2 Developer Evaluation

The aim of the developer evaluation was to test the usability and accep-
tance of the OakStreaming library by asking potential library users for
their opinion about the design of the library and peer-to-peer streaming
in general. The seven participants drawn out of the pool of student
employees at our department had intermediate to advanced skills and
experience in the areas of torrent-based peer-to-peer systems, peer-
to-peer systems in general, video streaming/hosting and JavaScript.
The lab experiment comprised three programming task and filling out
the evaluation questionnaire. The programming tasks were designed
to make the participants familiar with the API and functionality of the
OakStreaming library. The questionnaire mainly aimed at collecting
data about the usability and documentation of the OakStreaming library
as well as general opinions regarding peer-to-peer video streaming.

6.2.1 Session setup and programming tasks

The participants were invited in groups of two to three and had to solve
the same three tasks, but they were asked to work on them individually.
The setup was the same for all three programming tasks. The final Web
application of each task should be tested in two to three Web browser
windows. The participants could conduct these tests independent from
each other on their own device.

The first programming task was to create a Web application which
uploads and downloads a video to and from a Web server. The second
and third programming tasks then both focused on completing the
program code of a Web application which streams a video peer-to-
peer. The peer-to-peer connections were established locally between
the browser windows on the devices of the participants.

In task 2, the participants had to use the streamVideo method of the
OakStreaming library to create a StreamTicket object from a video
file. The object was then shared over the a synchronized data structure
with the Yjs collaboration library!?. The received object was then put
into the receiveStream method of the peer instances.

1Ohttp://y-js.org

OakStreaming: A Peer-to-Peer Video Streaming Library 25

Task 3 was very similar to task 2 but the participants had to use differ-
ent parameters and parameter values when creating the StreamTicket
object. In contrast to task 2, the video should be streamed in the peer-
assisted mode and the participants had to set a value for the ratio of
time downloaded from server versus peer-to-peer. The parameter values
of task 2 and 3 were given by the task description. To solve task 3
it was necessary to read parts of the OakStreaming documentation.
Finally, an evaluation form was filled out by the participants. It asked
the participants about their knowledge and experience in the areas of
torrent-based peer-to-peer systems, peer-to-peer systems in general,
video streaming/hosting and JavaScript. Moreover, the participants
were asked to rate the usefulness of several features that the Oak-
Streaming library implemented on-top of WebTorrent. Additionally,
the participants had to rate the usability of the OakStreaming API
documentation. Furthermore, the participants were asked about their
opinion regarding peer-to-peer video streaming in general.

6.2.2 Results

Five of the seven participants were able to solve all three tasks. Two
participants were only able to complete the tasks after short assistance.
The questionnaire revealed minor issues with the arguments, like
putting together URL and port properties. After the evaluation the
respective API was changed to a single URL property instead, which
can now handle strings in several formats (e.g. http://example.com:42,
http://example.com, example.com:42, etc.). Overall, all features of the
OakStreaming library were considered easily understandable.

We were also interested in general opinions of our developers on
peer-to-peer video streaming. Most of the participants rarely publish
or share, but often consume Web videos. They saw many important
advantages of peer-to-peer video streaming like benefits for small
content providers with successful videos and the breaking of the
monopoly of large content providers in terms of intellectual property
rights. Additional remarks of the respondents covered legal issues if
possibly illegal videos are streamed between peers.

26 I Koren and R. Klamma

7 Discussion and Future Work

This paper presented OakStreaming, a peer-to-peer video streaming
system for the Web. Itis available as open source software on GitHub!!.
The three main motivations for developing it were to reduce server
load compared to state-of-the-art client-server-based video streaming
systems; to avoid transfer of intellectual property to a third party;
and to maintain a reasonable quality level for the viewer. Since all
major browser manufacturers have implemented the W3C WebRTC
or similar specifications, some commercial WebRTC-based peer-to-
peer video streaming systems have been developed, while solutions
by the academic community lack many desired features. We discussed
the three alternative concepts synchronized look-up table, distributed
hash table and torrent tracker. Finally we implemented the WebTorrent
based peer-to-peer video streaming system called OakStreaming. Our
evaluation shows that the peer-assisted modus representing a hybrid
scenario with peer-to-peer video delivery and a fallback server sig-
nificantly reduces video playback start-up time. Peer-to-peer video
streaming functionality has been implemented based on the content
delivery functionality of the WebTorrent library.

The OakStreaming library extends the WebTorrent library by various
means:

e configurable limit on the amount of data each peer is allowed to
upload

e configurable parameter specifying when the client switches from
sequential-piece-selection to rarest-piece-selection

e dynamic combination of server and peer-to-peer streaming (peer-
assisted delivery)

e possibility to easily add new client instances to an existing peer-
to-peer network, without using a torrent tracker, by explicitly
exchanging signaling data

The main challenge during the implementation was that in many
third-party libraries we employed, documentation was lacking. Some
properties were only explained implicitly in GitHub issues and not
in the official API description. This may be due to the fact, that the

Uhttps://github.com/rwth-acis/WebTorrent-VideoStreaming/

OakStreaming: A Peer-to-Peer Video Streaming Library 27

corresponding standard is still very new, and the libraries are not yet
fully mature.

The results of the technical evaluation clearly indicate that peer-
assisted delivery and automatic switching between sequential-piece-
selection and rarest-piece-selection enhance the overall Quality of
Service (QoS) of the peer-to-peer video streaming system. In the
developer evaluation, the usability and the design of the Oak-
Streaming library were positively assessed by the participants. More-
over, the results of the questionnaire have shown that all participants
agreed that peer-to-peer video streaming will become more important in
the future. The results are helpful to set further goals regarding research
in the area of Web-based peer-to-peer video streaming. Limitations
of our work include further evaluation in larger developer and user
groups. With regard to fault tolerance, our system behaves differently
depending on which part has gone down. If the original seeder fails,
while not all fragments have been transferred yet, these video parts
cannot be compensated accordingly. Possibly a conservative approach
with a caching server can be more appropriate to deal with these cases.
However, as long as the WebTorrent tracker is online, the remaining
fragments will continue to be distributed. Privacy aspects in terms of
sharing peer information were neglected by our research, but we are
closely following security issues raised by the introduction of WebRTC
in the browser [14, 16].

7.1 Use Case Recommendations

We conclude the discussion of our library with some recommendations
for its employability in different use cases. Generally, our library is
best for videos that are highly demanded within a certain period of
time. Because the code is no longer executed after leaving a Web page,
the client can no longer upload fragments. While it might be possible
to work around this by deploying JavaScript Service Workers, other
conflicting effects, such as the increasing storage space requirements
of large video files or limited mobile data plans, play a detrimental
role. Table 2 shows typical use cases of video streaming on the Web.
We mention examples as well as an applicability estimation of our
library.

28 I Koren and R. Klamma

Table 2 Use Case Recommendations for the OakStreaming Library

Use Case Examples Applicability
Live broadcast/ Sports, Live TV Moderate applicability due to
multicast WebTorrent concept
Time-limited Short videos with Fully applicable
asynchronous temporal high
broadcast demand, social media
(up to 1 day) sharing, TikTok,
Instagram Stories
On-demand with Educational videos, Applicable, depending on mobile
temporal MOOCs bandwidth
bursts
On-demand YouTube, Netflix, Limited applicability, best for
Amazon Prime highly-demanded videos (e.g. for

releases of new episodes).

Video conferencing Skype, Webex Not applicable due to WebTorrent
concept

7.2 Future Work

We are planning to embed the library in various Web application
prototypes to measure long-term effects and performance. In doing
so, we plan to target the usage scenarios mentioned in Table 2. In
general, we believe that an open collection of best practices is needed on
the applicability of Web-based peer-to-peer technologies depending on
the use case. Open source solutions that make the various approaches
publicly testable are also in demand. Generally, we deem WebTorrent
applicable for further application areas besides video streaming where
large chunks of data need to be transfered to multiple clients. For
example, it can be used for dealing with 3D content in augmented
or virtual reality scenarios (cf. [5]). Further applicable targets are
level 5 peer-to-peer Web applications in the context of liguid Web
applications [4].

Today’s Web videos are often streamed with an adaptive bitrate
streaming technology, which downloads sections of the same video
in different bitrate versions depending on the network conditions of

OakStreaming: A Peer-to-Peer Video Streaming Library 29

the client. The DASH (Dynamic Adaptive Streaming over HTTP)
technique is an international standard that enables adaptive bitrate
streaming with conventional HTTP servers. Implementing adaptive
bitrate streaming within a peer-to-peer network with a satisfying
viewer experience is not trivial, as respective fragments would have
to be available or encoded on-the-fly on peers. To the best of our
knowledge, there is no implementation which offers an adaptive bitrate
in a WebRTC-based peer-to-peer video streaming system. Therefore,
adding support for adaptive bitrate streaming to the OakStreaming
library is a promising aim for future research and development.

Acknowledgements

We thank our student Philipp Bartels for his contributions towards the
implementation of the prototype and we are grateful for the feedback
received in our evaluation. We would also like to thank our anonymous
reviewers; the valuable comments helped to shape the article. The
work has received funding from the European Commission’s FP7 IP
“Learning Layers” under grant agreement no. 318209 and from the
European Research Council under the European Union’s Horizon 2020
Programme through the project “WEKIT” (grant no. 687669).

References

[1] Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, Anant
Narayanan, Bernard Aboba, Taylor Brandstetter, and Jan-Ivar
Bruaroey. WebRTC 1.0: Real-time Communication Between
Browsers: W3C Candidate Recommendation 27 September 2018.

[2] Rajkumar Buyya, Mukaddim Pathan, and Athena Vakali. Con-
tent Delivery Networks, volume 9 of Lecture notes in electrical
engineering. Springer-Verlag, Berlin, 2008.

[3] Cisco Systems. The Zettabyte Era: Trends and Analysis: June
2017.

[4] Andrea Gallidabino and Cesare Pautasso. Maturity Model for
Liquid Web Architectures. In Jordi Cabot, Roberto de Virgilio,
and Riccardo Torlone, editors, Web Engineering, volume 10360,
pages 206-224, Cham, 2017. Springer International Publishing.

30 I Koren and R. Klamma

[5] Yonghao Hu, Zhaohui Chen, Xiaojun Liu, Fei Huang, and
Jinyuan Jia. WebTorrent Based Fine-grained P2P Transmission of
Large-scale WebVR Indoor Scenes. In Matt Adcock and Tomasz
Bednarz, editors, Proceedings of the 22nd International Confer-
ence on 3D Web Technology — Web3D 17, pages 1-8, New York,
USA, 2017. ACM Press.

[6] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang.
Inside the New Coolstreaming: Principles, Measurements and
Performance Implications. In IEEE Conference on Computer
Communications, pages 1031-1039. IEEE, 2008.

[7] Bo Li and Hao Yin. Peer-to-Peer Live Video Streaming on the
Internet: Issues, Existing Approaches, and Challenges. Commu-
nications Magazine, IEEE, 45(6):94-99, 2007.

[8] A. J. Meyn. Browser to browser media streaming with HTMLS5:
Master’s thesis. Aalto University, 2012.

[9] Microsoft. Object RTC API, 2017.

[10] Christian Mossner and Dennis Herhausen. Video: the New Rules
of Communication. Marketing Review St. Gallen, 34(2):36—44,
2017.

[11] Mohamed Moulay and Vincenzo Mancuso. Experimental Per-
formance Evaluation of WebRTC Video Services over Mobile
Networks. In 2018 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), pages 541-546. IEEE,
15.04.2018-19.04.2018.

[12] Flavio Ribeiro Nogueira Barbosa and Luiz Fernando Gomes
Soares. Towards the Application of WebRTC Peer-to-Peer to Scale
Live Video Streaming over the Internet. In Simposio Brasileiro
de Redes de Computadores (SBRC), 2014.

[13] Jukka K. Nurminen, Antony J. R. Meyn, Eetu Jalonen, Yrjo Raivio,
and Rail Garcia Marrero. P2P Media Streaming with HTMLS
and WebRTC. In 2013 IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages 63-64,
2013.

[14] Panagiotis Papadopoulos, Panagiotis Ilia, Michalis Polychronakis,
Evangelos P. Markatos, Sotiris loannidis, and Giorgos Vasiliadis.

OakStreaming: A Peer-to-Peer Video Streaming Library 31

Master of Web Puppets: Abusing Web Browsers for Persistent and
Stealthy Computation. CoRR, abs/1810.00464, 2018.

[15] Konstantina Papagiannaki, Krishna Gummadi, Craig Partridge,
Mingchen Zhao, Paarijaat Aditya, Ang Chen, Yin Lin, Andreas
Haeberlen, Peter Druschel, Bruce Maggs, Bill Wishon, and
Miroslav Ponec. Peer-assisted content distribution in Akamai
netsession. In IMC ’13 Proceedings of the 2013 conference on
Internet measurement conference, pages 31-42. 2013.

[16] Andreas Reiter and Alexander Marsalek. WebRTC: Your Pri-
vacy is at Risk. In Proceedings of the Symposium on Applied
Computing, pages 664—669. ACM, Marrakech, Morocco, 2017.

[17] Eric Rescorla. Introduction to Distributed Hash Tables, 2006.

[18] Florian Rhinow, Pablo Porto Veloso, Carlos Puyelo, Stephen
Barrett, and Eamonn O. Nuallain. P2P live video streaming in
WebRTC. In 2014 World Congress on Computer Applications
and Information Systems (WCCAIS), pages 1-6, 2014.

[19] Roberto Roverso and Mikael Hogqvist. Hive.js: Browser-Based
Distributed Caching for Adaptive Video Streaming. In /EEE
International Symposium on Multimedia, pages 143-146, 2014.

[20] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanab-
han Pillai, Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon
Amos. Edge Analytics in the Internet of Things. IEEE Pervasive
Computing, 14(2):24-31, 2015.

[21] Thomas Stockhammer. = Dynamic adaptive streaming over
HTTP - Standards and Design Principles. In Ali C. Begen and
Ketan Mayer-Patel, editors, Proceedings of the second annual
ACM conference on Multimedia systems — MMSys ’11, page 133,
New York, USA, 2011. ACM Press.

[22] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a scalable
peer-to-peer lookup protocol for internet applications. IEEE/ACM
Transactions on Networking, 11(1):17-32, 2003.

[23] Masayuki Sugawara, Seo-Young Choi, and David Wood. Ultra-
High-Definition Television (Rec. ITU-R BT.2020): A Gener-
ational Leap in the Evolution of Television [Standards in a
Nutshell]. IEEE Signal Processing Magazine, 31(3):170-174,
2014.

32 I Koren and R. Klamma

[24] Yevgeniya Sulema, Noam Amram, Oleksii Aleshchenko, and
Olena Sivak. Quality of Experience Estimation for WebRTC-
based Video Streaming. In FEuropean Wireless 2018; 24th
European Wireless Conference. [VDE Verlag GmbH], [Berlin],
2018.

[25] Matthew Wolenetz, Jerry Smith, Mark Watson, Aaron Colwell,
and Adrian Bateman. Media Source Extensions: W3C Candidate
Recommendation 12 November 2015, 2015.

Biographies

Istvan Koren is a research assistant at RWTH Aachen University.
Previous academic stations included i.a. TU Dresden and PUC Rio
de Janeiro. He is working in the “advanced community information
systems” (ACIS) at the information systems chair, RWTH Aachen
University. Istvdn has worked in several large-scale European research
projects in the area of Technology Enhanced Learning (Learning Lay-
ers, WEKIT, AR-FOR-EU). His research interests are Web engineering,
Internet of Things and social computing.

OakStreaming: A Peer-to-Peer Video Streaming Library 33

Ralf Klamma holds diploma, doctoral and habilitation degrees in
computer science from RWTH Aachen University. He leads the
research group “advanced community information systems” (ACIS)
at the information systems chair, RWTH Aachen University. He is
known for his work in major EU projects for Technology Enhanced
Learning (PROLEARN, GALA, ROLE, Learning Layers, TELMAP,
Tellnet, CUELC, SAGE, BOOST, VIRTUS and WEKIT). Ralf orga-
nized doctoral summer schools & conferences in Technology Enhanced
Learning, Web Engineering and Social Network Analysis. He published
more than 200 scientific papers. He is on the editorial board of Social
Network Analysis and Mining (SNAM) and IxD&A. His research
interests are community information systems, serious games, aug-
mented reality, web engineering, social network analysis, requirements
engineering and technology enhanced learning.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

