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A B S T R A C T

Industry 4.0 is currently transforming industrial workplaces into sensor-assisted high-tech environments. While
it is often feared that jobs will be lost through increasing automation, we are convinced that there is an enormous
potential for versatile and competent workers at innovative workplaces. Training at the workplace may con-
tribute to this. In this context, both body-near wearables and industrial devices produce an enormous amount of
data. However, the question is how to deal with this amount of data. To this end, visual analytics is a combi-
nation of computational techniques from data mining and machine learning with human perceptional methods
from human-computer interaction. In this article we present a method and tool support to create rich and
interactive visual analytics charts to analyze innovative training solutions in high-tech workplace settings. This
brings together the computer's capacities to handle large data and calculation resources with the human ability
to quickly grasp relationships. Our technical evaluation shows, that the approach is feasible from a computa-
tional perspective; usability tests revealed that the developed pipeline metaphor reaches its goal. Our results may
help in designing future systems that fulfill the needs of both trainers and learners in Industry 4.0 settings.

1. Introduction

The emerging paradigm shift to digital Industry 4.0 workplace set-
tings has several profound effects like the need to restructure entire
manufacturing and training processes. The term Industry 4.0, originally
introduced by a German government initiative, describes the inter-
connectedness of manufacturing devices on the shop floor, and re-
sulting applications such as asset management and predictive main-
tenance (Lasi, Fettke, Kemper, Feld, & Hoffmann, 2014). The process of
creating digital twins of physical artifacts, human interactions and even
complex workflows is thereby known as digitization. It may not only
speed up innovation cycles, but also open new opportunities for in-
novative businesses. On the downside, digitization is often seen as a
boogey man and threat for industrial workforces, saying that on the
long run, technologies like robots will replace human workers. Un-
deniably, the constant stream of innovation puts pressure on workers to
acquire new skills to deal with new workflows and new machines.
Hereby, continuous training plays a special role. Constant evaluation
and self-assessment of the training helps to render it more effective and
useful. Therefore, it is advantageous that in these high-tech Industry 4.0
settings, both industrial devices and wearable devices of workers collect
huge amounts of information. Combined, the gathered data is a valu-
able asset for further analysis in order to provide insights into human-

machine interactions; additionally it may be used for replaying training
data to future workforces. A challenge of these workplace settings is
that the educational context is not necessarily tied to a particular lo-
cation and time, but instead may happen at different places over var-
ious periods of times.

On the technical level, there are many hurdles on the way to make
sensor data a valuable asset in analyzing Industry 4.0 learning settings.
The obstacles are manifold and include ethical and privacy issues, as
well as more technically, synchronization of different data sources and
limitations of the devices involved. On a profound level, the large
number of network- and application-layer protocols make it hard to
access smart devices. Regarding the technical interplay of devices and
information systems, Web standards have already helped bridging the
gap between various mobile platforms in the last years: any mobile
device, smartphone, tablet computer or smart watch is able to display
HTML5 Web pages with dynamic JavaScript content. Beyond the user
interaction aspect, Web standards are tremendously useful for con-
necting to arbitrary devices. A number of protocols for the Internet of
Things (IoT) provide bindings for making communication available to
browsers; examples are Websockets endpoints of XMPP and MQTT
systems. While technical challenges on the protocol and device level are
one side of the coin, the other side conceals further obstacles, namely
the large amount of data. Besides the acquisition level, further
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challenges include privacy, the format, semantics and the interpretation
of data (Labrinidis & Jagadish, 2012), rendering it difficult to grasp
trends and understand correlations. To this end, visual analytics com-
bines the capability of machines to collect and provide immense
amounts of data with the ability of the human brain to visually struc-
ture and classify data. The goal of visual analytics is to gain knowledge
through model building, visualize it dynamically and then feed back the
acquired evidence into the data gathering and filtering process.

Finally, a critical view needs to be taken on the scaling aspect, not
only on the analytical level, but also in terms of application develop-
ment. The more users a software has, the greater the variety of prac-
tices, making it hard to serve all kinds of combinations of sensors,
scenarios and learning needs. Especially in the long tail of customers,
many niche use cases may be found (Anderson, 2006). These special
needs may be met by employing more developers trained to implement
the needs of the users. However, this approach does not scale as the
number of users and possible use cases exceeds the number of devel-
opers in orders of magnitude. Similarly, analyzing the learning settings
of the high number of workers is a challenge. To serve the increasing
number of usage scenarios for learning analytics involving Internet of
Things devices, we need to rethink current workflows. To this end, we
present a method and tool support to place the use of the tools in the
hands of the adopters and creates societal development processes em-
bedded within professional communities. The open character of our
suggested workflow starts with acquiring data from arbitrary sensors
that are capable of exchanging data using Web-based protocols. SWEVA
(Social Web Environment for Visual Analytics) is a platform on which
learners and teachers alike can build their own data visualization pi-
pelines. Our conceptual findings of visual analytics pipelines can be
applied in various disciplines while our technical results can be em-
bedded into any Web-based platform leading to ubiquitous visual
wearable-enhanced learning analytics.

The remainder is structured as follows. In Section 2 we first present
related work in the areas of visual learning analytics and end user de-
velopment of Internet of Things systems. Section 3 then introduces a
number of key terms, standards and technologies for making physical
aspects of the environment available on the Web through inter-
connected sensors. Section 4 shows how the sensor data serves as input
for dynamic processing pipelines whose instantiations result in state-of-
the-art interactive visual analytics. Our standards-based cross-device
software framework conceptualized in Section 5 is able to connect with
industrial Internet of Things machines and wearable devices based on
open interface documentation formats. The easy-to-use Web frontend
presented in Section 6 allows non-technical end users to collaboratively
design data pipelines that ultimately get executed to output dynamic
visual analytics charts. Section 7 shows the evaluation of the system.
Section 8 discusses the conclusions and points to future work.

2. Related work

In this section, we analyze related work in the areas of Internet of
Things (IoT) and visual analytics. We start with an overview of the
societal impact of the IoT, then we present work on visual analytics,
before we conclude with related research that combines these areas.

Internet of Things (IoT) (Carretero & García, 2014; Gubbi, Buyya,
Marusic, & Palaniswami, 2013; McEwen & Cassimally, 2013) frame-
works are focusing either on the consumer or the business market. Main
differences are for example the acceptable level of security aspects of
solutions. While in consumer markets the majority of vendors and
customers are quite tolerant against security issues like data protection
breaches and possible exploitation of gathered data, the situation in
business-oriented markets is very different with respect to emerging
Industry 4.0 and security threats through criminals and foreign agencies
up to the national security level. While the latter is targeted at by new
regulations, government institutions and new defensive agencies in the
military, the intelligence sector and the security authorities, the former

is expected to be self-regulated at the moment. Therefore, in the area of
the Internet of Things, governmental investments are mainly targeted at
defense and attack prevention capabilities in the cyberspace, leaving a
lot of room for consumer-driven innovations, but also problems for the
adoption of technology. Several initiatives have already discovered the
enormous potential of the IoT for the Web (Web of Things - WoT)
(Guinard, Trifa, Mattern, & Wilde, 2011; Krawiec et al., 2017) or social
applications (Social Internet of Things - SIoT) (Atzori et al., 2011, 2012,
2014; Lin & Dong, 2017; Perera, Zaslavsky, Christen, &
Georgakopoulos, 2014). But only a few development platforms are
available (Eisenhauer, Rosengren, & Antolin, 2009). It will be a major
problem for users to organize themselves in the face of the speed of
technology, protocol and tool development (infrastructure), while
keeping their own agency. For technology and infrastructure, the fre-
quency of adoption waves following the diffusion of innovations
(Rogers, 2003) is increasing, as the next technological wave is already
rolling while the previous one has only just spread.

Visual analytics (Keim, Kohlhammer, Ellis, & Mansmann, 2010)
aims at integrating the human capabilities into the data analysis process
by using visual representations and interaction techniques. The user
gets involved in the analysis process and data interpretation and rea-
soning are supported by visualizing the important aspects of the data.
When this process is distributed and enlarged to a bigger group of
people, additional social processes become active. Thus, visual analytics
is even more important if many stakeholders view possibly different
views and interests on the data are involved. Therefore, the model
needs to be extended by a social dimension. It leads to multi-faceted
visual analytics with possibly conflicting debates about interpretation
of results and far leading analytic activities. The context of a commu-
nity using an information system gives a common social structure for
the stakeholder in case of missing institutional context. Hereby, in-
formation system use and development are inseparably interlocked
with each other by balancing agency and structure (Orlikowski &
Robey, 1991). With the advent of social software, the development
process has become much more complex and engineering methods have
to consider informal community structures much more than before.
Understanding and exploiting the differences between organizational
information systems as planned and community information systems as
in use contribute to better utilization of organizational and societal
resources. Within the information system, Community Learning Ana-
lytics (CLA) are the processes of identification, analysis, visualization
and support of informal community-regulated learning processes
(Klamma et al., 2013). Professional communities of practice (CoP) are
learning informally. CoP are groups of people who share a concern or a
passion for something they do and who interact regularly to learn how
to do it better (Wenger, 1998).

There are various examples of applications allowing communities to
interact with their environment through the use of IoT technologies.
Snap-To-It (Freitas et al., 2016) allows users to opportunistically in-
teract with any appliance simply by taking a picture of it. The authors
of (Mikusz et al., 2015) repurpose existing Web analytics technologies
for IoT applications. Crowd-based analytics on top of a video archive is
realized in (Satyanarayanan et al., 2015). These approaches demon-
strate the uptake of visual analytics by communities of practice and
motivate us to steer our research in this direction. However, the com-
plex interplay between social learning, technology appropriation and
community learning analytics is coming up with a set of heterogeneous
requirements that are not easy to fulfill in the moment.

3. Background

In this section, we explain the underlying technologies necessary for
any solution tackling visual analytics with IoT data. First, we introduce
common Internet of Things protocols, with a particular focus on those
that are accessible on the Web. We then discuss API documentation
specification formats and show existing prototypes.
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3.1. Internet of Things protocols

A protocol describes a set of rules that is applied when two com-
munication partners exchange information. Standardized protocols
allow implementers to create software that is able to interact with other
components following the same set of rules. An example is HTTP, which
regulates data transfers on the Web. Without the HTTP protocol,
browsers would not now know how to contact a server to retrieve
HTML pages or images from it. In the Internet of Things world, proto-
cols are limited by the resource constraints of devices. Because of this,
messages that are exchanged between nodes must not exceed a certain
length depending on the devices and their hardware limitations. Also,
verbose messages like the ones typically exchanged within SOAP (see
Section 3.2) are not feasible on low-end sensor devices with weak
processors and low memories.

For this reason, standardization organizations in collaboration with
academia and industry have come up with a number of solutions on
multiple levels of the OSI reference model, a conceptual model cate-
gorizing network protols into abstraction layers. For the IoT, on the
lower levels, there is ZigBee, Bluetooth and pure TCP/IP. ZigBee is a
specification for wireless networks with low data traffic. Every module
has a unique 64 Bit identifier; when entering a network, an additional
16 Bit identifier is assigned that is used for the communication in that
specific network. The most notable commercial adopters of the ZigBee
protocol are Philips with its Hue lighting system and the TRÅDFRI de-
vice family by IKEA. While the ZigBee IP extension allows directly
connecting ZigBee networks to the Internet, it lacks adoption. Another
prominent example of IoT protocols is Bluetooth. Especially with the
introduction of Bluetooth Low Energy with version 4, the IEEE standard
was adopted by wearable device manufacturers for fitness trackers and
smart watches; it is also known from Bluetooth speakers and car en-
tertainment systems. The low energy standard allows to connect devices
in under 5ms and keep the connection at a maximum distance of at
most 100m. The biggest selling point of Bluetooth IoT devices is that
Bluetooth is already built into all state-of-the-art smartphones and it is
available in state-of-the-art Web browsers via the Web Bluetooth spe-
cification.1 While the protocol is popular for occasionally connected
devices, it has not yet get real traction in smart home scenarios. In
contrast, the highly used TCP/IP is a family of protocols best known for
the HTTP protocol that is built upon it. Every participant in the network
is identified with an IP address. Besides PCs, laptops, also routers, print
servers, IP phones and IP radios are connected to the Internet via TCP/
IP.

Application-layer protocols are built on top of lower-level protocols
like the ones presented above. They make the data exchange between
software applications sitting on different devices possible. Examples are
XMPP,MQTT and CoAP (Waher, 2015). XMPP is an XML-based protocol
consisting of federated servers. Every user is addressable via a unique
Jabber ID (JID) and a resource suffix identifying the concrete device the
user is using, e.g. alice@provider.com/phone. The format resembles an
e-mail address. MQTT and CoAP are representatives of protocols that
are reusing concepts of HTTP. HTTP works as request/reply protocol
where stateless resources are retrieved from a server. Every message
consists of a header and a body. The header starts with a method, e.g.
GET. Then, further metadata like the data type of the body or the re-
quested data type is described. The Constrained Application Protocol
(CoAP) is standardized by the IETF. CoAP knows two message types,
request and response. A message contains headers and the body. Fi-
nally, MQTT is a client/server protocol with the server called ‘broker’.
The broker arranges messages in hierarchical topics separated by for-
ward slashes. Other clients subscribe to these topics and are notified by
the broker once new messages arrive. Clients may also define a “last
will” for a topic which is published by the broker once the client goes

offline. This is useful for gracefully notifying subscribers that the device
went offline.

Although the aforementioned event-driven protocols are not di-
rectly compatible to the request/reply-oriented HTTP, there exist
gateways to translate the exchange pattern to protocols which are un-
derstood by Web browsers. For this reason, the WebSockets Web
standard (W3C, 2018) can be used. WebSockets allow to setup two-way
communication channels between browsers and servers. A further
mechanisms in the HTTP standard for creating asynchronous APIs are
Server Push for sending information from the server to a client. It en-
ables servers to send out asynchronous notifications to interested cli-
ents.

3.2. APIs

An application program interface (API) is a clearly defined access
point to reuse processing capability of a distinct piece of software. APIs
can be found in operating systems, libraries and frameworks, and on the
Web. For instance, the Portable Operating System Interface (POSIX) is a
standard that in its first version dates back to 1988 (Walli, 1995). It
provides a specific communication standard to maintain compatibility
between different operating systems. Included are definitions for pro-
cess control and creation, signals and input/output to hardware inter-
faces. On the Internet, the term service-oriented architecture (SOA),
first mentioned in the year 1996 by Gartner, refers to a model, where
functionalities are spread across computing nodes in a distributed
network. The respective standard is SOAP (originally Simple Object
Access Protocol), an XML-based message exchange format. SOAP APIs
are described using Web Services Description Language (WSDL), a
platform, programming language and protocol-independent description
language for services on the Web. The seminal dissertation by Roy
Fielding Architectural Styles and the Design of Network-based Software
Architectures (Fielding, 2000) describes a programming paradigm for
distributed services that uses the HTTP protocol. The architecture is
today known as REST standing for Representational State Transfer.
RESTful APIs use the methods GET for retrieving information from a
server, POST for creating new resources, PUT for updating and DELETE
for removing resources from a server. REST is an architectural style
primarily suited for synchronous request/response based interactions
between software artifacts.

3.2.1. API documentation formats
To describe the functionalities of an API, API documentation for-

mats can be used. As explained above, a WSDL document is an XML-
based documentation format for SOAP APIs. It contains definitions for
data types, messages, ports, bindings and porttypes. A client accessing a
webservice can read in WSDL files to determine which functions are
available on the server. The format allows to automatically generate
source code in various programming languages. Many integrated de-
velopment environments (IDEs) provide life cycle functionalities to
trace changes in remote interfaces, to adapt the generated code ac-
cordingly. WSDL only defines the syntax of the interface and omits
semantics like quality of service or guaranteed response times. To this
end, extensions like WSDL-S or OWL-S were published that describe the
semantics of a SOAP webservice. The Web Application Description
Language (WADL) targetting RESTful webservices was submitted to the
W3C (Hadley, 2009), yet it is still not formally standardized. Similarly
to WSDL, it is a machine-readable service description format. Following
the RESTful architectural style, it models resources and relationships
between them. WADL is an XML-based format, but can be used to de-
scribe JSON APIs. Alternative formats are RAML by MuleSoft (MuleSoft,
2017), API Blueprint by Apiary (API, 2017) or OpenAPI by the OpenAPI
Initiative (Swagger, 2018). MuleSoft has lately joined the OpenAPI
initiative, leading to a market consolidation towards OpenAPI. In the
next section, we present the OpenAPI specification in detail and show
how the concepts were adopted by AsyncAPI, a derivate documentation1 https://webbluetoothcg.github.io/web-bluetooth/.
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format for asynchronous APIs on the Web.

3.2.2. OpenAPI specification
The OpenAPI Specification is a description format for RESTful APIs

on the Web. It is both human- and machine understandable. The spe-
cification document can be written in the text-based formats JSON or
YAML, both formats are convertible to each other. It starts with an info
header that defines the basic information of the API it is describing,
such as the version, the name, the license and the authors. The server
block contains pointers to server addresses the API is running on. Then,
the paths of the REST API are listed. Each path item object describes the
method that is possible, together with possible request and response
parameters, as well as response codes. For describing data types, the
items refer to the components section of the OpenAPI documentation.
Amongst other definitions, it contains JSON schema descriptions of
parameters used to validate input or output data. Examples that are
compatible with the respective schema can be provided.

While the specification was renamed to OpenAPI, the name Swagger
now stands for a whole framework that revolves around automated
tools built around the specification. Swagger-UI is an online tool for
creating demo pages with try-out functionality of an API, where re-
quests can be created with the help of simple text boxes and buttons.
Furthermore, there exist code generators to generate code libraries for a
wide variety of programing languages. They create methods, parameter
objects and validators.

The OpenAPI specification is language-agnostic and allows to be
extended by vendor-specific extensions. Additionally, in OpenAPI 3.0.0,
callbacks can be defined to register out-of-band event listeners, to notify
an external service in response to certain events. These event listeners
are also known as webhooks. However, no real asynchronous behavior
can be specified that is native to asynchronous event-based protocols
like MQTT and CoAP. To this end, the AsyncAPI was created that is
based on OpenAPI.

3.2.3. AsyncAPI
AsyncAPI is an API documentation specification which is based on

the recent OpenAPI 3.0.0 standard described in the section above. IT
allows a human- and machine-readable documentation for APIs that are
not based on request/response, but publish/subscribe. This is typically
the case for sensors employed in the Internet of Things. Examples are
temperature sensors who regularly update the temperature on a server.
In this case, the server publishes the AsyncAPI description. The clients
can then parse out the needed endpoints, either based on a decision by
the developer, or dynamically via schema-matching.

Similarly to OpenAPI, the specification starts with an info part
listing the version and license of the API. Then, server endpoints are
listed. The asynchronous equivalent to paths are topics. AsyncAPI de-
fines a best practice for topic descriptions in the format company.-
service.1.event.user.signedup. Here, an event is emitted once a user
signs up to a service by the company. The numeric literal stands for the
version number of the API. Instead of event the specification can also
list a command, which describes an operation that needs to be per-
formed. Based on the concrete protocol the specification is used for, the
topics are translated to equivalent descriptions in the development
process. In MQTT, the dots in the above topic description are translated
to forward slashes. Topic names may also include variable parts en-
compassed in curly braces.

The components part at the end of the specification lists the data
types and schemas of the input or output parameters. They are based on
JSON schema (Galiegue Zypet al., 2013, p. 32). Similar to the Swagger
ecosystem, there are code generators for AsyncAPI available.

3.3. Existing prototypes

In the following two sections, we present two prototypes we de-
veloped in earlier work. Both target specific aspects needed for our

overall goal to create a visual analytics Web application for workplace
learning scenarios.

3.3.1. Direwolf
Direwolf is a framework for cross-device user interfaces, accounting

for the fact that users today employ multiple device types in parallel
(Kovachev, Renzel, Nicolaescu, Koren, & Klamma, 2014). Thereby, the
framework manages the synchronization of the state (video running or
not) across devices. In the most recent extension of Direwolf, we pre-
sented how to integrate Web services and IoT devices in a typical smart
home setting into the Direwolf cross-device application framework
(Koren et al., 2018). We did this by equipping each device with a QR
code or NFC tag; both point to a URL to an OpenAPI or AsyncAPI de-
scription. The framework then reads out the URL, parses the doc-
umentation and generates user interface components into the existing
application space. This way, the framework remains arbitrarily ex-
pandable to support new device types in the future.

3.3.2. SWEVA
The Social Web Environment for Visual Analytics (SWEVA) is a

collaborative Web application that enables communities to create their
own visual analytics tools. It was developed to enable open source
development communities to visualize their development efforts. For
this reason, various data sources like GitHub code repository statistics
and issue tracker data can be accessed and modeled together in a pi-
peline editor, by multiple participants simultaneously. Updates are
propagated to the collaborators in near real-time. At the end of the
pipeline, a visualization charting type can be defined. SWEVA offers
various options like line charts, bar charts, or graph-based visualization.
The visualization part shows the visualization next to some input ele-
ments that are responsible for the interactivity of the visualization. End
users can change parameters of the visualization, like the data range,
dynamically, and the visualization is updated respectively. More ad-
vanced programming is possible via an integrated scripting language.

SWEVA also supports asynchronous events coming from Internet of
Things sensors. The events are processed by an event-driven message
queue based on XMPP or MQTT. Using the same data pipeline principle,
the visual analytics modeling engine allows to include modules that
retrieve their data from these asynchronous data sources. The data is
then combined and transformed towards the visualization charting
engine.

4. Societal software development methodology

Our research is driven by the social learning theory of Communities
of Practice (CoP) (Wenger, 1998). In a CoP, community members col-
laborate to mutually improve their practices. Our communities consist
of end users who work in a digitized environment, developers who
create software, and researchers analyzing the community-specific in-
teractions. The roles are overlapping, as we enable end users to parti-
cipate in the development process. Infrastructuring is the provision of
infrastructure that adapts to the needs of a community using it (Pipek &
Wulf, 2009). The term is closely related to participatory design (Schuler
& Namioka, 2009) and end-user development (Lieberman, Paternò, &
Wulf, 2006), which happen on different stages of the development
process. We link these levels in our overarching methodology that we
present in this section. It starts from requirements and ends with means
for self-assessment with the means of visual analytics.

First, social requirements engineering (Renzel & Klamma, 2014)
opens up the requirements gathering process from low-scaling focus
groups to the crowd of the Web 2.0. On Requirements Bazaar,2 new
ideas, feature requests or bug reports can be entered, liked, shared and
commented. This enables developers to get in touch with end users at a

2 https://requirements-bazaar.org.
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very early stage, to enable a feedback loop. From here, requirements
can be exported to more developer-related issue trackers. At any time,
the current state of the implementation of the requirements is com-
municated clearly, leading to a transparent workflow. If enabled, con-
tributors get automatically notified by emails upon any change of the
state of a requirement. The states are open, assigned and realized. When
entering, a requirement is first marked as open. Developers can list
requirements and sort them in various ways. After a developer decided
to develop a certain requirement, it gets marked as assigned. After the
developer is finished, the requirement gets a realized flag.

The next step after requirements are turned into code is putting the
developed software into practice. In the following we are describing a
general software architecture based on Web technologies. In this ar-
chitecture, services and frontends are deployed and provided by back-
ends on a server. Services process input and serve their output to be
retrieved by clients. This is done in a request/reply manner; for every
request to the service, a reply is generated and served. They may be
executed on workstations, dedicated servers or fully virtualized servers
in a cloud environment. Frontends are made available as HTML markup
files, JavaScript files containing execution code, and CSS stylesheets
including style definitions. The software running on low-powered
sensor nodes is much more comprised. For instance, a temperature
sensor often only consists of the physical hardware measuring physical
values, and a tiny piece of software that transmits the measured sensor
data to a server, either directly or via a gateway. In contrast to the
aforementioned request/reply pattern, such ‘dumb’ sensor hardware
follows a publish/subscribe pattern. In a publish/subscribe system,
events are sent to a central entity, which then notifies all subscribed
actors in the system about the event. To stay in the terms of our ar-
chitecture, services deployed on the backend would typically be clients
of such a publish/subscribe system, turning them into hybrid services.
On the one hand they are available for request/reply style interactions,
on the other hand they are notified of events happening in their net-
work. A client willing to show the historical data in its frontend can
then easily request the historical records from the service. This example
system already shows the simplified underlying principle of the system
presented in this article.

After the software is put into practice, we are interested in the
runtime behavior of the system including its usage. For this reason, we
perform formative evaluation during the use of the deployed

information system. As mentioned before, the learning context in
Industry 4.0 settings is particularly challenging because of the various
interdisciplinary data sources. Interacting with industrial and wearable
devices naturally produces a lot of data. Some of the sensor data is of
environmental origin, like temperature, humidity or brightness. Other
data originates from the operating process, such as pushing a button,
turning a rotary switch or moving a slide switch. Yet other input is
coming from the human machine operator itself and is captured by
wearable devices. Such data include the heart rate, body temperature or
general body motion sequences. Finally, there are context-dependent
data like the time of operation, the age of the machine operator or the
years of work experience. It is easy to follow that the amount of data
becomes more complex with the number of inputs. Moreover, it makes
it hard to grasp interrelations, such as connecting an increased heart
rate with a particular machine operation. To this end, we need an
overarching analytics strategy that is serving both software usage as
well as learning analytics. In our community of practice, the analytics
can serve the goal to strengthen the learning goals, and to make the
information system more successful in various aspects like failure be-
havior and usability. Visual analytics is set to combine the power of
computer-generated analytics and human interpretation.

Computers are capable of evaluating enormous amounts of data in a
very short time. The human brain, conversely, is optimized to quickly
identify correlations. Visual analytics is an approach to combine the
best of both worlds (Keim et al., 2008). It involves human judgment in
the analytics process, utilizing characteristics such as flexibility, crea-
tivity and background knowledge. It is possible to directly interact with
the represented data, gain new knowledge and therefore make better
decisions in the future. The goal of visual analytics is to gain knowledge
through model building, visualize it dynamically and then feed back the
acquired evidence into the data gathering and filtering process. Visual
analytics is a multidisciplinary field with many focus areas (Thomas &
Cook, 2006). Examples include weather forecasts, disaster and emer-
gency management, software analytics and physical simulation in en-
gineering.

We identify visual analytics as a useful tool in creating learning
analytics for wearable learning solutions in an Industry 4.0 context.
However, we acknowledge that while we can reuse various analytics
services available, it remains hard to integrate various data sources. To
this end, in the next section we present our concept that links the both

Fig. 1. Conceptual view on the visual analytics system.
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worlds APIs and visual analytics in an end-user-oriented way.

5. Conceptual design

Fig. 1 shows a conceptual overview of the system. On the left side,
multiple Internet of Things sensors deployed in Industry 4.0 machines
and wearable devices provide input to an asynchronous message queue.
In the center, we see the real-time message queue, which routes mes-
sages to both a database for long-term memory of historical data, and to
devices interested in showing the data in visual analytics charts. On the
right, the outputted visual analytics chart is shown that can be modified
by user input through input text boxes, sliders and checkboxes.

In this section, we start with the requirements for a Industry 4.0-
based system for visual analytics. Then, we present conceptual con-
siderations on previous systems we have built, namely Direwolf and
SWEVA. We then show how the two concepts are interwoven.

5.1. Requirements

Our requirements were collected within an innovative joint
European partnership project in the area of wearable-enhanced
learning. The WEKIT project3 is a consortium of twelve partners from
six countries and runs under the Horizon 2020 funding of the European
Commission. WEKIT stands for Wearable Experience for Knowledge In-
tensive Training. The objectives are to develop an open technology
platform for augmented reality experiences, to augment training in situ
with live expert guidance and to create a roadmap for augmented
reality learning together in a community of stakeholders. The applica-
tion cases are in aeronautics, medical engineering and space. Require-
ments for the platform are sourced by the WEKIT Community.4 A
dedicated webpage for the community, together with outposts at
Twitter, Facebook, Google Plus and LinkedIn, collects interested sta-
keholders and gives a voice to them. During the first months of the
project, the community was asked to submit ideas at the WEKIT com-
munity website. The idea collection was technically realized via a
WordPress plugin showing content from Requirements Bazaar. For the
WEKIT idea collection, people could enter their idea and comment and
vote on existing ones. The development partners in the WEKIT project
then developed the most promising scenarios for the project and em-
ployed the result in big trials organized together with the application
partners. After the trials, new requirements were entered into Re-
quirements Bazaar and prioritized there. Besides requirements for the
existing software, also new idea categories were posted; one of them is
analytics, providing us with real-world requirements in the following.
The analytics category mainly contains requirements in terms of post-
processing sensor data for learning purposes. In the following, we de-
scribe these requirements in a descending order based on the priorities
given through the voting process. The actual list of requirements can be
retrieved in Requirements Bazaar.5

The most important requirement is capturing the execution time of
learning activities with the framework. This includes the full duration
of the training as well as the single durations during each action step.
An action in the WEKIT terminology defines a well-defined act, such as
pushing a certain button in the mockup of the International Space
Station. The second requirement, Attention Tracking, is also related to
the course of actions. It proposes timeline visualizations with levels for
each action step. Such a timeline should optionally visualize different
body and machine data, e.g. the heart rate in combination with an
action. This requirement shows the interdisciplinary background of the
analytics component: While the heart rate is captured by a wearable
heart rate sensor, the action comes from the equipment operated on.

The next requirement asks for context-based performance metrics,
name analyzing the number of repetitions. This includes, how often the
learner practiced a certain training; how many times a learner did a
certain step, to understand how difficult it was; how many times the
learner replayed instructions, to understand how to do the work step;
and the learning curve, to understand how much quicker the learner is
when doing repetitions. To see the progression of a single student,
analytics should compare the performance of the same person. The
same students could be asked to repeat the procedure to evaluate if the
whole process is improving. Gaze tracking could be done to analyze if a
student is looking at the correct place when performing tasks. Similarly,
a gaze trail could be analyzed as frequently changing gaze direction
may indicate uncertainty. Analytics could also be helpful for trainers to
receive data about their performances, i.e. total procedure duration,
duration of each task etc. The performance of different students should
be compared to see if the majority is stuck in a particular action; this
can be also used to detect if a specific instruction of the expert is un-
clear. In the same way, the performances of students and experts should
be compared. The next requirements are about real-time feedback
during the training scenario; an engaging graphical attention indicator
should change according to the attention level. In the same way, the
number of times a mistake is repeated could be highlighted. The
movement of tools and objects should be tracked to see if they are
handled too roughly.

The requirements presented above show the main need for an in-
teractive analytics strategy well aligned with the goals of visual ana-
lytics. Further requirements were omitted here, but can be found in the
Requirements Bazaar. From the depicted requirements here, we mainly
derive the need of using different data sources. In addition, they require
the expertise of experts from possibly various disciplines. For this
reason, we aspire a collaborative solution. To be inclusive towards
heterogeneous data sources without needing a developer for adjusting
the software to various protocols, the inclusion needs to be auto-
matically handled. Regarding the non-functional requirements, mul-
tiple ideas expressed in the Requirements Bazaar refer to immediate
feedback within the device. For this reason, the solution should be
available cross-device, embeddable and running on different device
types.

5.2. Combining IoT and services within visual analytics

In Section 3.3 we introduced the prototypes Direwolf and SWEVA.
Direwolf is a cross-device framework for integrating heterogeneous
devices and Web services into a collaborative app. On one hand its
features allow to create applications whose state is synchronized across
various devices of its users. On the other hand, it provides functionality
to dynamically integrate Internet of Things devices and Web services.
SWEVA is an online tool for collaboratively creating visual analytics
pipelines. However, the integration of data coming from Industry 4.0
appliances and wearable devices was not achieved yet because of the
complexity of dealing with different vendor-specific APIs.

To this end, we combined the strengths of both prototypes and in-
tegrated their approaches in the combined Direwolf & SWEVA proto-
type. For simplicity, we refer to it as SWEVA in the following. As a
result, we got support for creating cross-device, collaborative Web ap-
plications where the application state is synchronized. We now can
integrate various device types in the interactions modeled with SWEVA.
On top of that, we added a SWEVA module generator based on API
documentation specifications for both synchronous and asynchronous
APIs. This is useful in particular when considering the challenges of the
large amount of sensor data as described in Section 1. For instance,
services can be provided and integrated that are responsible for filtering
or cleaning data, or others for combining different data sources. As
shown in Fig. 2, historical data may play a role in analytical charts. To
integrate historical records, a SWEVA module can be provided that
accesses a Web service providing the history.

3 https://wekit.eu.
4 https://wekit-community.org.
5 https://requirements-bazaar.org/projects/155/categories/640.
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Once developed, SWEVA modules are reusable in other contexts as
well. For instance, filtering or enriching modules targeting specific
wearable IoT sensors can be integrated in other learning scenarios,
creating a market of data-handling operations. The details of our im-
plementation are detailed in the following section.

6. Social Web-based environment for visual analytics

This section presents the implementation of the extended SWEVA
system. We show the components of the system and the technologies,
libraries and frameworks used. Fig. 2 depicts the processing of real-time
and historical information in the processing pipeline. It results in the
display of the visualization. Following visual analytics principles, the
visualization can be zoomed and panned. Additionally, the processing
pipeline can be parameterized by human input in terms of textual or
numerical input, as the example of the Year shows in the figure.

6.1. Analytics pipeline editor

The analytics pipeline editor is a collaborative tool for designing a
data processing graph. This data pipeline defines the data flow from
data sources, user input over processing functions to the visualization.
The data structure of the pipeline is a directed acyclic graph (DAG). The
nodes of the graph are modules, the edges consist of directed data flows
from source to target. The modules are either processing nodes or user
input nodes. A processing node can be anything that retrieves, trans-
forms or generates data, for example retrieving data from a RESTful
service. A user input node stands for input that the user can manipulate
during runtime. For convenience, the data format of an user input node
can be defined, e.g. time, a number or a range. Also, default values can
be specified. This allows the rendering engine to display adequate user
input boxes, e.g. a calendar for a time, etc.

The interaction with the pipeline editor is synchronized across all
devices and users who are simultaneously using the SWEVA Web ap-
plication. For this reason, we employ the Yjs library.6 It is a JavaScript
library that uses a CRDT algorithm for synchronizing a data structure
across devices. By default, it exchanges data from one client to the other
via a Websocket connection to a server. Following a peer-to-peer ar-
chitecture, the server part only has the role of forwarding messages
between clients, no conflict resolution is performed. Besides the ex-
changeability of the communication layer, the library can work on
various data types. SWEVA uses hashmap and array data structures to

save value-key pairs as well as lists.

6.2. Embedding hardware resources

Even though devices in the Internet of Things expose APIs that can
be used by developers, it is a very complex tasks to access these APIs.
Protocols need to be followed and parameters need to be set correctly.
As explained earlier, documentation specifications allow to rapidly
generate code to access the APIs. We leverage these formats to create
data retrieval modules for the SWEVA pipeline editor. For this, the
devices need to offer the documentation specification. We achieve this
by attaching a barcode to the IoT node, which points to the doc-
umentation file. It is either stored on the device itself via a tiny web-
server, or the link shows to a server hosting the documentation.
Parameters that are represented in the specifications with curly
brackets, are appended to the URL via GET notation. This way, the same
specification file can be reused by various Internet of Things sensors.
For example, the specification file may contain a variable for specifying
the id of the device: {id}. In this case, the QR code or NFC tag would
expose the URL https://example.com/api.json?id=312 where 312 is
the ID of the specific IoT node. SWEVA reads in the specification file
and generates modules based on heuristics. It replaces the variables
with the actual parameter values.

A typical generated module for an asynchronous API creates a
connection to the message queue and subscribes to the specified topic.
Upon message arrival, the module is informed and continues to run
through the pipeline. The pipeline is explained in detail in the next
section.

6.3. Visual analytics engine

After the data processing pipeline is created collaboratively in the
pipeline editor, the model is formalized into a JavaScript object which
is then handed over to the SWEVA visual analytics engine. Instead of
directly passing the objects locally, the data structure can also be se-
rialized into a JSON string to be shared amongst users. The visual
analytics rendering engine is responsible for showing the visualization
and create user interface elements for influencing the visualization. For
the user input fields it uses the definitions of the user input nodes de-
fined in the pipeline. The data processing nodes are run following the
directed acyclic graph. For running the nodes, the visual analytics en-
gine infers SWEVA Core, the JavaScript task runner performing the
calculations. SWEVA Core can either run locally in the browser, or on a
server. The latter option is particularly useful for low-end mobile
phones that are not capable of running expensive data transformation

Fig. 2. Illustration of the SWEVA processing pipeline.

6 http://y-js.org.

I. Koren, R. Klamma Computers in Human Behavior 89 (2018) 385–394

391

http://y-js.org


tasks due to a restrained processor and memory.
Currently, there are already multiple visualization options avail-

able: raw, line, and bar charts. The raw visualization only shows the
resulting JSON document that is the output of the SWEVA core task
runner. The line and bar chart visualizations are developed using D3.js,
a library for creating dynamic engines. The main intention of using
D3.js was to create the visualization locally, without having to send the
data to a third-party website like Highcharts or Google Charts. This
way, we keep the data safe on the device of the user.

However, the visualization engine is extensible. New chart options
can be created and provided as Web components on the Web. They are
embeddable by pointing SWEVA to their URL. The application then
reads in, displays and invokes the custom visualization.

6.4. Resulting Web application

A screenshot of the final product is depicted in Fig. 3. On the left, it
shows the SWEVA pipeline editor, on the right, the resulting visuali-
zation. Here, they are side-by-side, but they can be independently
embedded into arbitrary Web pages. First, we explain the pipeline
editor in detail. The processing graph is marked with an (a). In this case,
the heart rate node on the left provides the data to the node on the right
that prepares the data for the line chart. The output of the heart rate
source is connected to the input of the line chart. The line chart node
contains two user input connection points; one for the start time and
one for the end time of the data's time period (b). On the right side of
the pipeline editor (c), the toolbar contains buttons for adding new
processing nodes (either empty or predefined) or new input nodes, and
to select a visualization. The last button (orange) deploys the processing
pipeline to the visualization engine. The visualization is shown on the
right of the screenshot. Mainly it contains the line chart visualization of
the heart rate data. On the right (d), the user input nodes of the pipeline
are transformed into text boxes that the user of the visualization can
change. Upon change, the visualization updates the displayed timeline.
In this case, the end is open, so the chart continues displaying new
incoming values. The content of both widgets can be zoomed (e) and
(f). For working together remotely, a chat functionality has been in-
tegrated for easier coordination of the collaborating users (g), and (h,

hidden behind a tab).
The system can be embedded in third-party websites by using Web

components. For this, the visualization engine is developed as a custom
HTML tag < sweva-visualization> . By loading the Web component
definition and adding the tag as a child node, any website can display
visualizations. For example, we successfully embedded visualizations in
a third-party site based on the WordPress content management system.

7. Evaluation

To validate our prototypical implementation of SWEVA, we per-
formed a technical evaluation and a moderated usability test with vo-
lunteers. The results are presented in this section. First, we do a com-
parison between the envisioned and the delivered functionality. Both
evaluations described here were performed not with concrete Internet
of Things devices, but with comparable scenarios, stressing individual
aspects. However, we implemented an Internet of Things scenario
where we connected an accelerometer node with an MQTT broker. A
SWEVA module was developed that accessed the broker to display or-
ientation information in real-time. As SWEVA Core, which runs the data
pipeline, is protocol-agnostic, we do not see major technical differences
in the scenarios, except for possible use cases in training, which are
discussed in the next section.

7.1. Requirements

As described in Section 5, the most important requirement esti-
mated by the target community is capturing the time of the performed
learning actions. We tackled this by allowing real-time visualizations,
as well as historical visualizations. The time frame can be influenced by
user inputs, e.g. by selecting the start and end dates of the analytical
content. Our developed timeline visualization allows linking specific
points in time with further data. Together with a service providing at-
tention tracking information, it can be combined to show the learner's
attention over a specific period of time. Our visual analytics component
allows zooming in and selecting subsets of data. Comparing perfor-
mance between learners is enabled through the access to historical data
sets of comparable situations. While our framework is in principle

Fig. 3. SWEVA pipeline editor (left) and visualization engine (right).
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embeddable into arbitrary (wearable) devices, we have not yet im-
plemented direct real-time feedback within applications. In this respect,
the demanded gaze tracking in the concrete augmented reality context
is out of scope for our prototype, however, the technical infrastructure
to capture and replay gaze tracking features is set up in our visual
analytics infrastructure.

7.2. Technical evaluation

The goal of our technical evaluation was to measure the load of the
execution of the visualization pipelines on current client systems with
varying processing pipelines. The machine running the evaluation was
run by an Intel i5-3210M CPU with 2.50 GHz. Therefore, we set up two
visualization scenarios that involved querying data from a third-party
webservice and performing data transformations. Even though these
scenarios are not embedded in wearable-based learning with IoT de-
vices, we consider our measurements to be representative for similar
visualization pipelines in the described settings. As first visualization,
we choose to display the network of contributors to Requirements
Bazaar, our continuous innovation platform used for the requirements
gathering. The graph-based visualization shows the selected project in
the center. Other nodes are the project's categories, its requirements,
and the respective contributors of new ideas, votes and comments. The
second visualization consists of our analytics dataset gathered by all the
nodes of our las2peer7 application framework, running the learning
backend infrastructure of the Learning Layers informal learning Eur-
opean project.8

To measure the execution speed, we performed the visualization
request three times with disabled caching and took the average value.
The Requirements Bazaar visualization required 1.11 s to process and
render the visualization, including the download of data from the
webservice. The overall time required for the actual data transforma-
tion was on average 0.87 s. While this value does neither satisfy real-
time requirements from the embedded systems community, nor the
human reaction time of around 150ms, we are positive that it is fast
enough to be considered real-time in terms of analytics. Additionally, it
only counts the initial processing; real-time chart updates, e.g. when
adding a value coming from an MQTT node, are added faster. Memory-
wise the total heap memory consumption was 5.3 MB. We consider this
reasonable compared to other websites (YouTube front page: 7.7MB;
Wikipedia front page: 3.2 MB).

7.3. Usability

We tested the usability of the system with 15 users in total. They
were recruited on voluntary basis from the pool of students at our
university; most of them were from the computer science department.
While we acknowledge the limited expressiveness of that computer
science test group, as end users are our main target, we wanted to make
sure that developers in particular understand the concepts of our visual
pipeline editor. Also, a focus was on the perceived value of the built-in
collaborative scripting editor to create even more complex pipelines.
We held three sessions with three participants and one session with five.
A printed document contained an introduction and the task descrip-
tions. To not burden the users with a complex wearable analytics sce-
nario, we decided to test the software with a basic movie rating setup.
For this, the users first had to rate some popular movies on a five-level
Likert-type scale. Then, the task was to create a visual analytics vi-
sualizations. To achieve this, a webservice had to be queried that re-
turned the voting results. The data then had to be wired together and
visualized in a bar chart with the help of the SWEVA platform. After the
evaluation session, the participants were asked to fill in a questionnaire.

It consisted of 31 five-level Likert scale questions and two open text
questions.

The usability was asked on the basis of EN ISO 9241-110,9 covering
aspects such as task suitability and conformity with user expectations.
The participants mostly agreed, that the presented tools offer the ne-
cessary functionalities to fulfill the tasks. All user interface elements
were rated as purposeful, though we received recommendations to
create tooltips and further visual aid. This might be also rooted by the
fact that on purpose we did not explain users the interface before by
providing videos or oral instructions. Customizability was perceived as
sufficient, while error feedback needs to be improved. Collaboration
support was also asked for in the questionnaire. As discussed in Section
2, we consider collaboration as an essential means when multiple sta-
keholders come together and add a social dimension to visual analytics.
The results indicate that the usefulness is perceived as neither overly
useful nor detrimental. We explain that with the study design and ex-
pect the usefulness value to rise when employed by end users, as they
may rely on collaborating expert-users to reach their goals. However,
we observed some destructive behavior during the collaborative ses-
sion: some users deleted nodes that have just been created by another
users, or new nodes were obstructing the view of another. We deduce
from this, that awareness functionalities could enhance the results
significantly. Most users were able to learn something from one an-
other; this is even more valid for the non-developer users, as all three of
them rated that they had learned something new in the collaborative
session. All participants acknowledged that collaboration encourages
sharing of experience and knowledge.

The technical evaluation showed that we fulfilled our goal of
creating a light-weight visual analytics engine that can be easily em-
bedded into third-party Web applications. Based on the usability eva-
luation, we can conclude that all users were sufficiently able to use the
tools for the intended purpose. However, we see a clear need for
awareness functionality. Finally, we want to study the appropriation of
the platform for real wearable and Industry 4.0 use cases. Therefore we
plan to implement the exact requirements mentioned in Section 5.1.

8. Conclusion

In this article we presented the extended SWEVA framework for
embedding Industry 4.0 and wearable devices into cross-device Web
applications for the reason of Visual Learning Analytics. For this reason,
we showed how the functionalities of cross-device application devel-
opment, first of all the easy embedding of third-party devices, can be
easily accomplished using commodity functionality like QR codes. A
particular highlight of our prototype is using API documentation spe-
cifications for automatically generating code to access Industry 4.0 and
wearable devices. API documentation is a popular instrument for de-
velopers to make their APIs usable by other developers. In our case, we
use the documentation to make the APIs usable for end user commu-
nities.

8.1. Collaborative learning analytics

Another main contribution of our work is adding a social dimension
to the visual analytics workflow. We achieved this by embedding real-
time collaboration between stakeholders into our method. Technically,
this is realized using a state synchronization across browsers.
Embedding different stakeholder views and interests is a powerful
means. In particular, we envision experts manipulating and refining
analytics pipeline during training sessions. Displaying these visualiza-
tions in real-time for instance in augmented reality scenarios may fur-
ther support self-assessment.

7 https://las2peer.org.
8 http://learning-layers.eu/. 9 https://en.wikipedia.org/wiki/ISO_9241.
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8.2. Future work

The extensible architecture of SWEVA allows future updates in
various regards. First of all, we envision a proper user management
with layered restrictions based on the collaborator's expertise. This is
particularly important since we also include end users in the colla-
boration who might not know what a specific module is doing. On the
other hand, developers may remove certain user interface elements that
are important for the end users. Together with user management, we
want to introduce awareness functionalities to ensure that all partici-
pants know what's going on in the collaborative workspace. Then, we
are working on more intuitive ways to allow all users to participate in
the session. We could e.g. introduce textual or graphical drawing an-
notations. Besides, we are currently working towards embedding near
real-time feedback in the head-up display of augmented reality glasses
like the Microsoft HoloLens to allow in-situ feedback.

Acknowledgements

We would like to thank our student Alexander Ruppert for his
contributions towards the implementation of SWEVA and we are
grateful for the feedback received in our evaluation. We are especially
thankful for the useful and supportive remarks expressed by our re-
viewers; they helped positioning our approach in the wider context of
visual learning analytics. The work has received funding from the
European Commission’s FP7 IP Learning Layers under grant agreement
no. 318209 and from the European Research Council under the
European Union's Horizon 2020 Programme through the project
“WEKIT” (grant no. 687669).

References

Anderson, C. (2006). The long tail: Why the future of business is selling less of more. New
York: Hyperion.

API Blueprint (2017). https://apiblueprint.org/.
Atzori, L., Iera, A., & Morabito, G. (2011). Siot: Giving a social structure to the internet of

things. Communications Letters, IEEE, 15(11), 1193–1195.
Atzori, L., Iera, A., & Morabito, G. (2014). From ‘smart objects’ to ‘social objects’: The next

evolutionary step of the internet of things. IEEE Communications Magazine, 52(1),
97–105. https://doi.org/10.1109/MCOM.2014.6710070.

Atzori, L., Iera, A., Morabito, G., & Nitti, M. (2012). The social internet of things (SIoT) –
when social networks meet the internet of things: Concept, architecture and network
characterization. Computer Networks, 56(16), 3594–3608. https://doi.org/10.1016/j.
comnet.2012.07.010.

Carretero, J., & García, J. D. (2014). The internet of things: Connecting the world.
Personal and Ubiquitous Computing, 18(2), 445–447. https://doi.org/10.1007/s00779-
013-0665-z.

Eisenhauer, M., Rosengren, P., & Antolin, P. (2009). A development platform for in-
tegrating wireless devices and sensors into ambient intelligence systems. 2009 6th
annual IEEE communications society conference on sensor, mesh and ad hoc commu-
nications and networks workshops (pp. 1–3). .

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architecturesPh.D. thesis. Irvine, Irvine, CA, USA: University of California. http://
www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm.

Freitas, A. d., Nebeling, M., Chen, X. A., Yang, J., Ranithangam, A. S. K. K., & Dey, A. K.
(2016). Snap-to-it: A user-inspired platform for opportunistic device interactions.
Proceedings of the 34th annual ACM conference on human factors in computing systems
(CHI’16).

Galiegue, F., Zyp, K., et al. (2013). JSON schema: Core definitions and terminology. Internet
Engineering Task Force (IETF).

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A
vision, architectural elements, and future directions. Future Generation Computer
Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010.

Guinard, D., Trifa, V., Mattern, F., & Wilde, E. (2011). From the internet of things to the

web of things: Resource-oriented architecture and best practices. In D. Uckelmann,
M. Harrison, & F. Michahelles (Eds.). Architecting the Internet of Things (pp. 97–129).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Hadley, M. (2009). Web application description language.
Keim, D. A., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., & Melançon, G.

(2008). Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko,
J.-D. Fekete, & C. North (Vol. Eds.), Information visualization: Vol. 4950 of LNCS, (pp.
154–175). Springer Berlin/Heidelberg.

Keim, D. A., Kohlhammer, J., Ellis, G., & Mansmann, F. (2010). Mastering the information
age: Solving problems with visual analytics. Goslar: Florian Mansmann and Eurographics
Association.

Klamma, R. (2013). Community learning analytics – challenges and opportunities. In J.-F.
Wang, & R. W. H. Lau (Vol. Eds.), Advances in web-based learning: ICWL 2013: Vol.
8167 of LNCS, (pp. 284–293). Berlin: Springer. https://doi.org/10.1007/978-3-642-
41175-5_29.

Koren, I., & Klamma, R. (2018). The exploitation of OpenAPI documentation for the
generation of web frontends. In P.-A. Champin, F. Gandon, F. Gandon, M. Lalmas, &
P. G. Ipeirotis (Eds.). Companion of the web conference 2018 - WWW ’18 (pp. 781–
787). New York, New York, USA: ACM Press. https://doi.org/10.1145/3184558.
3188740.

Kovachev, D., Renzel, D., Nicolaescu, P., Koren, I., & Klamma, R. (2014). DireWolf: A
framework for widget-based distributed user interfaces. Journal of Web Engineering,
13(3&4), 203–222.

Krawiec, P., Sosnowski, M., Batalla, J. M., Mavromoustakis, C. X., Mastorakis, G., & Pallis,
E. (2017). Survey on technologies for enabling real-time communication in the web
of things. In J. M. Batalla, G. Mastorakis, C. X. Mavromoustakis, & E. Pallis (Eds.).
Beyond the Internet of Things, Internet of Things (pp. 323–339). Cham: Springer
International Publishing.

Labrinidis, A., & Jagadish, H. V. (2012). Challenges and opportunities with big data.
Proceedings of the VLDB Endow, 5(12), 2032–2033. https://doi.org/10.14778/
2367502.2367572.

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business
& Information Systems Engineering, 6(4), 239–242. https://doi.org/10.1007/s12599-
014-0334-4.

Lieberman, H., Paternò, F., & Wulf, V. (2006). End user development. Human-computer
interaction series, Vol. v. 9. Dordrecht: Springer.

Lin, Z., & Dong, L. (2017). Clarifying trust in social internet of things. IEEE Transactions on
Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2017.2762678.

McEwen, A., & Cassimally, H. (2013). Designing the Internet of Things. Hoboken, N.J.:
Wiley.

Mikusz, M., Clinch, S., Jones, R., Harding, M., Winstanley, C., & Davies, N. (2015).
Repurposing web analytics to support the IoT. Computer, 48(9), 42–49. https://doi.
org/10.1109/MC.2015.260.

MuleSoft, I. (2017). RAML. https://raml.org/.
Orlikowski, W. J., & Robey, D. (1991). Information technology and the structuring of

organizations. Information Systems Research, 2(2), 143–169.
Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware

computing for the internet of things: A survey. IEEE Communications Surveys &
Tutorials, 16(1), 414–454. https://doi.org/10.1109/SURV.2013.042313.00197.

Pipek, V., & Wulf, V. (2009). Infrastructuring: Toward an integrated perspective on the
design and use of information technology. Journal of the Association for Information
Systems, 10(5), 447–473. http://aisel.aisnet.org/jais/vol10/iss5/1/.

Renzel, D., & Klamma, R. (Vol. Eds.), (2014). Large-scale social requirements engineering:
Vol. 2IEEE Special Technical Community on Social Networking (IEEE STCSN).

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., et al. (2015). Edge

analytics in the internet of things. IEEE Pervasive Computing, 14(2), 24–31. https://
doi.org/10.1109/MPRV.2015.32.

Schuler, D., & Namioka, A. (2009). Participatory design: Principles and practices. Boca Raton
and London: CRC.

Swagger (2018). https://swagger.io/.
Thomas, J. J., & Cook, K. A. (2006). A visual analytics agenda, computer graphics and

applications. IEEE, 26(1), 10–13.
W3C (2018). HTML living standard: WebSocket. https://html.spec.whatwg.org/multipage/

web-sockets.html.
Waher, P. (2015). Learning Internet of Things: Explore and learn about Internet of Things with

the help of engaging and enlightening tutorials designed for raspberry Pi. Birmingham,
England: Packt Publishing.

Walli, S. R. (1995). The POSIX family of standards. StandardView, 3(1), 11–17. https://
doi.org/10.1145/210308.210315.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity, learning in
doing. Cambridge, UK: Cambridge University Press.

I. Koren, R. Klamma Computers in Human Behavior 89 (2018) 385–394

394

http://refhub.elsevier.com/S0747-5632(18)30358-3/sref1
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref1
https://apiblueprint.org/
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref3
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref3
https://doi.org/10.1109/MCOM.2014.6710070
https://doi.org/10.1016/j.comnet.2012.07.010
https://doi.org/10.1016/j.comnet.2012.07.010
https://doi.org/10.1007/s00779-013-0665-z
https://doi.org/10.1007/s00779-013-0665-z
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref7
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref7
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref7
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref7
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref9
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref9
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref9
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref9
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref10
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref10
https://doi.org/10.1016/j.future.2013.01.010
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref12
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref12
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref12
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref12
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref13
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref14
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref14
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref14
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref14
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref15
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref15
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref15
https://doi.org/10.1007/978-3-642-41175-5_29
https://doi.org/10.1007/978-3-642-41175-5_29
https://doi.org/10.1145/3184558.3188740
https://doi.org/10.1145/3184558.3188740
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref18
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref18
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref18
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref19
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref19
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref19
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref19
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref19
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref22
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref22
https://doi.org/10.1109/TKDE.2017.2762678
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref24
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref24
https://doi.org/10.1109/MC.2015.260
https://doi.org/10.1109/MC.2015.260
https://raml.org/
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref27
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref27
https://doi.org/10.1109/SURV.2013.042313.00197
http://aisel.aisnet.org/jais/vol10/iss5/1/
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref30
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref30
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref31
https://doi.org/10.1109/MPRV.2015.32
https://doi.org/10.1109/MPRV.2015.32
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref33
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref33
https://swagger.io/
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref35
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref35
https://html.spec.whatwg.org/multipage/web-sockets.html
https://html.spec.whatwg.org/multipage/web-sockets.html
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref37
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref37
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref37
https://doi.org/10.1145/210308.210315
https://doi.org/10.1145/210308.210315
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref39
http://refhub.elsevier.com/S0747-5632(18)30358-3/sref39

	Enabling visual community learning analytics with Internet of Things devices
	Introduction
	Related work
	Background
	Internet of Things protocols
	APIs
	API documentation formats
	OpenAPI specification
	AsyncAPI

	Existing prototypes
	Direwolf
	SWEVA


	Societal software development methodology
	Conceptual design
	Requirements
	Combining IoT and services within visual analytics

	Social Web-based environment for visual analytics
	Analytics pipeline editor
	Embedding hardware resources
	Visual analytics engine
	Resulting Web application

	Evaluation
	Requirements
	Technical evaluation
	Usability

	Conclusion
	Collaborative learning analytics
	Future work

	Acknowledgements
	References




