
Generation of Web Frontends
from API Documentation with

Direwolf Interaction Flow Designer

István Koren and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University, Ahornstr. 55, 52056 Aachen, Germany

{koren,klamma}@dbis.rwth-aachen.de
http://dbis.rwth-aachen.de

Abstract. Services and their interfaces are a cornerstone of Web appli-
cations. API description formats help developers in accessing and com-
bining service functionalities. The OpenAPI specification has gained con-
siderable popularity over the last years. Existing tools around OpenAPI
support the generation of HTML interfaces to mockup requests. While
these interfaces are suited well for developers, it remains hard for non-
developers to assess service functionalities. To this end, we present the
Direwolf Interaction Flow Designer in this demo. It parses OpenAPI doc-
uments to generate Web frontends with the help of the Interaction Flow
Modeling Language (IFML). A screencast of our tool is available online1.

Keywords: OpenAPI; IFML; Web Components; Interaction Design

1 Introduction

Componentization in software engineering increases modularization and reusabil-
ity. Application program interfaces (APIs) are a prerequisite for ensuring com-
patibility of the software modules. To enable automated requests and to increase
usability for developers, extensive documentation is required. In the realm of
service-oriented architectures, the Web services description language (WSDL)
has been used as contract for service access. For the popular world of lightweight
REST-based interfaces on the Web, a number of API documentation specifica-
tions have been proposed. The OpenAPI specification [5], formerly known as
Swagger, can be used to create machine-readable descriptions of service inter-
faces. A tool ecosystem around the specification allows code and mockup gener-
ation, amongst others. Swagger UI is an example for generating a user interface
out of OpenAPI; data has to be entered in pure JSON. Thus, it is mainly suit-
able for developers. For application designers or even end users, it is difficult to
assess API functionalities out of its documentation.

1 https://youtu.be/KFOPmPShak4

This is the authors' preprint version of the paper appearing in Proc. of International Conference on Web Engineering 2018 (ICWE 2018), Cáceres, Spain.© 2018 Springer



2 István Koren et al.

In this demo we present a collaborative Web tool that generates Web fron-
tends based on OpenAPI. It first generates an Interaction Flow Modeling Lan-
guage (IFML) model out of the documentation. IFML is a visual modeling lan-
guage that aims to model user interactions of user interfaces. The model is then
transformed into an HTML5 & JavaScript application, which is based on Web
Components. In Section 2, we show the process of getting to Web frontends and
highlight implementation details. Section 3 concludes the article and points to
future work.

2 Transformation Approach

Related work on generating Web frontends from API documentation are mainly
to be found in the SOA realm, like the ServFace Builder [4] and the adaptive
user interface generation framework [3]. Rodŕıguez et al. parse HTML API doc-
umentation into a custom metamodel [6]. The Cameleon reference framework
defines a multi-step procedural model from task models and an abstract user
interface specification to a concrete user interface [2]. Other approaches like the
commercial WebRatio2 are able to generate models from API documentation,
and yet others generate user interfaces out of models.

Our main goal is to create running Web application prototypes out of state-
of-the-art Web documentation. As a starting point, we take an OpenAPI file. The
format is human-readable and can be represented in JSON or YAML formats. It
consists of various parts; in the header, versioning and server-specific information
can be found. The central part maps service paths to operations and defines valid
input parameters and outputs. For this reason, it uses JSON Schema types either
in place or referenced in the components part of document.

As an intermediary step, we use IFML [1]. In the following, we explain its
main modeling concepts. View Containers group multiple different user inter-
face elements together. View Components are nodes that represent a certain
goal of the user interface. Events are either system- or user-generated. Actions
represent functionalities happening on user interaction. These model elements
are connected via navigation and data flows. Navigation flows happen when the
content of the user interface change. Data flows model internal data flows be-
tween model elements. The appendix of the standards presents various mappings
to real user interface code, e.g. XAML or HTML. We extend the mapping and
generate HTML5 & JavaScript frontends.

Figure 1 shows the transformation process of generating Web frontends from
left to right. We highlighted equivalent parts within documentation, model and
frontend in the same background color. The purple/dark background highlights
the server endpoint information in the IFML model. This information is mod-
eled as IFML action. As the server information cannot be directly represented
in the IFML model, we save it as metadata of the model. In the resulting
HTML5 markup and JavaScript in the background, the server metadata is

2 https://www.webratio.com



Direwolf Interaction Flow Designer 3

servers:
url: http://abc.eu

paths:
/login:
get:
parameters:
- name: username
in: query
type: string

- name: password
in: query
type: string

<<Form>>
View Component

Action
LOGIN

Password

Username

OpenAPI Specification IFML Model HTML5 & JavaScript

Fig. 1. Transformation of OpenAPI via IFML to HTML5 & JavaScript

equally present. We provide predefined elements that e.g. display lists, or dy-
namically generate forms out of the JSON Schema description. In the final user
interface, upon clicking the form submit button, the element retrieves the server
endpoint information from the metadata, gets the input from the form and then
performs a request to the server. Similarly, the list element retrieves an array
from the REST endpoint and then displays the items in a list or table.

Fig. 2. Interaction Flow Designer and HTML Preview

2.1 Implementation

Figure 2 shows a screenshot of our tool with a basic address book service. It
was built with Web Components and the Polymer 2.0 library based on object-
oriented JavaScript. On the left, the Model Element Palette shows the available
model items. At its bottom, an Add Elements button opens a dialog, where the
URL of an OpenAPI documentation can be added. When confirming the dialog,
the model elements are generated and added to the palette.

The Interaction Flow Modeler is the central part of the UI. It shows the model
that can be freely dragged around and zoomed in and out. Model elements and



4 István Koren et al.

edges can be selected to change the size and group. Upon selecting an element,
its properties are shown on the right of the screen, in the Properties Browser.
Below the Properties Browser, the HTML5 Preview pane shows a preview of the
generated model element. The whole tool is collaborative, so that users can work
on the model in near real-time at remote places. The synchronization is achieved
via the Yjs library3. For instance, the property browser is directly working on
the underlying data model, so that other parts of the UI are notified in order to
update the representation.

3 Conclusion and Future Work

In this demo paper, we presented Direwolf Interaction Flow Designer that gen-
erates Web frontends out of Web service descriptions. The goal is to create
high-fidelity prototypes to test service functionalities.

As models are abstractions of real world phenomena, our approach includes
some limitations. For instance, certain details like password input fields cannot
be represented in the OpenAPI documentation. Another drawback is that we are
currently not handling the security parameters present in the OpenAPI speci-
fication. We are currently embedding our tool in a complete application design
life cycle. For this, we see the Internet of Things domain as a valuable target, as
devices often have a lot of functionalities that are hard to grasp for end users.

Acknowledgements. The research leading to these results has received funding
from the European Research Council under the European Union’s Horizon 2020
Programme through the project “WEKIT” (grant no. 687669).

References

1. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML. The MK/OMG press, Morgan
Kaufmann (2014)

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.:
A Unifying Reference Framework for multi-target user interfaces. Interacting with
computers 15(3), 289–308 (2003)

3. He, J., Yen, I.L.: Adaptive User Interface Generation for Web Services. In: IEEE
International Conference on e-Business Engineering (ICEBE’07). pp. 536–539 (2007)

4. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace
Builder - A WYSIWYG Approach for Building Service-Based Applications. In:
Benatallah, Boualem et al.and Casati, F., Kappel, G., Rossi, G. (eds.) Web En-
gineering, Lecture Notes in Computer Science, vol. 6189, pp. 498–501. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010)

5. OpenAPI Initiative: The OpenAPI Specification (2018), https://www.openapis.org/
6. Rodŕıguez, R., Espinosa, R., Bianchini, D., Garrigós, I., Mazón, J.N., Zubcoff, J.J.:

Extracting Models from Web API Documentation. In: Grossniklaus, M., Wimmer,
M. (eds.) Current Trends in Web Engineering, Lecture Notes in Computer Science,
vol. 7703, pp. 134–145. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

3 http://y-js.org




