
The Exploitation of OpenAPI Documentation
for the Generation of Web Frontends

István Koren, Ralf Klamma
RWTH Aachen University

Aachen, Germany
koren,klamma@dbis.rwth-aachen.de

ABSTRACT
New Internet-enabled devices andWeb services are introduced on a
daily basis. Documentation formats are available that describe their
functionalities in terms of API endpoints and parameters. In partic-
ular, the OpenAPI specification has gained considerable influence
over the last years. Web-based solutions exist that generate inter-
active OpenAPI documentation with HTML5 & JavaScript. They
allow developers to quickly get an understanding what the services
and devices do and how they work. However, the generated user
interfaces are far from real-world practices of designers and end
users. We present an approach to overcome this gap, by using a
model-driven methodology resulting in state-of-the-art responsive
Web user interfaces. To this end, we use the Interaction Flow Mod-
eling Language (IFML) as intermediary model specification to bring
together APIs and frontends. Our implementation is based on open
standards like Web Components and SVG. A screencast of our tool
is available at https://youtu.be/KFOPmPShak4

CCS CONCEPTS
• Information systems → RESTful web services; • Software
and its engineering → Integrated and visual development
environments; Design languages;

KEYWORDS
OpenAPI; IFML; Web Components; Interaction Design
ACM Reference Format:
István Koren, Ralf Klamma. 2018. The Exploitation of OpenAPI Documenta-
tion for the Generation of Web Frontends. In WWW ’18 Companion: The
2018 Web Conference Companion, April 23–27, 2018, Lyon, France. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3184558.3188740

1 INTRODUCTION
Our society is currently experiencing an unprecedented introduc-
tion of new Internet-enabled device types that come in various
sizes and shapes. Examples reach from laptops and smartphones
to wearable augmented reality glasses. Nearly every consumer de-
vice is able to communicate with Web resources over TCP/IP and
HTTP(S). Additionally, consumer devices like smartphones, tablets
and even smart watches feature Web browsers displaying interac-
tive HTML5 pages with JavaScript. The challenges in developing

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3188740

applications supporting these devices are manifold. On the backend
scalability, reliability andmaintainability issues are addressed by the
componentization of software into virtualized containers running
microservices. These services expose application programming in-
terfaces (API) that can be used by developers to create applications.
To simplify the usage of APIs, a number of API documentation
standards have been proposed; for REST-based Web services, the
OpenAPI specification [10], formerly known as Swagger, became
the apparent market leader. An ecosystem of related toolsets has
evolved around the specification offering code generation and sim-
ple Web frontends. While these tools are developer-friendly, they
are not really intended to be used by non-developers like designers
and end users. For example, generated user interfaces contain many
technical details like JSON schemas and possible error codes. To
this end, our main goal is to automate the time-consuming process
of user interface creation from API to Web frontend. We want to
be able to generate application prototypes whose design can be
tailored to user-specific demands in a consecutive step. By that, we
additionally free up developer resources to address further user
requirements.

In this article, we present a tool for generating and designing
Web frontends based on the OpenAPI documentation format. It is
able to communicate with various Web services through their APIs.
We aim for a collaborative platform where the whole community
consisting of domain experts, designers and developers can work
together on an application. To make interactions as easy as possible,
drag & drop behavior and tooltips are essential functional require-
ments. On the non-functional side, the main goal is to entirely
rely on established Web standards, or at least open specifications
supported by various parties. To account for the large number of
display form factors, we follow a model-driven interaction design
approach with the help of the Interaction Flow Modeling Language
(IFML). Conceptual models are familiar to developers from soft-
ware engineering and database design; IFML in particular can be
used to design device-independent interactions between frontend
components. Our implementation is built upon the recent Web
Components group of W3C specifications, to allow modularity and
reusability across applications.

The remainder is structured as follows. Section 2 presents re-
lated research in the area of generating Web frontends based on
service descriptions. Section 3 explains related Web technologies.
The conceptual design is explained in Section 4. In Section 5 we
explain the implementation details. Section 6 discusses strengths
and weaknesses of our approach. Section 7 concludes our article
with an outlook on future work.

https://youtu.be/KFOPmPShak4
https://doi.org/10.1145/3184558.3188740
https://doi.org/10.1145/3184558.3188740
This is the authors' preprint version of the paper appearing in Companion Proceedings of the 2018 The Web Conference (WWW 2018), Lyon, France.
© 2018 ACM

2 RELATEDWORK
Regarding cross-device user interfaces, research reveals that sev-
eral approaches have been made to create universal user interface
descriptions applicable to various application areas. The most no-
table endeavor targeting the Web is the Cameleon reference frame-
work [5]. It defines a multi-step procedural model from task models
over abstract UI specifications to a concrete UI.

Maximilien et al. introduce Swashup, a domain-specific language
for Web API and service mashups [16]. It leverages service descrip-
tions like WSDL but focuses on the service composition. Similarly,
He and Yen [8] and the ServFace Builder [17] rely on WSDL files.
The ServFace approach generates user interfaces, but is driven by
annotations written by the service developer. Vaziri et al. generate
chatbots out of Swagger documentation to interact with APIs in nat-
ural language [21]. Their system is able to improve the specification
by letting users interact with the chatbot. The authors report that
many REST APIs feature complex JSON structures, while their chat-
bot is designed for scalar input such as strings and dates. Swagger
is also used by [13] that suggests the user APIs based on contextual
properties. For each service, an Android user interface is gener-
ated; the goal is to provide uniform interfaces for a wide variety of
context-dependent services.

There are several approaches that connect Internet of Things
(IoT) device APIs to the Web. Simurgh uses the RAML API specifi-
cation language to discover and integrate Internet of Things (IoT)
devices [12]. Their functionalities are then combined by end users.
Software products in the area of multi-vendor aggregation of IoT
devices are for example Node-RED [6] and IFTTT [9]. However,
while offering powerful features and a great user experience, these
tools are neither multi-user capable for synchronous collaboration
nor based on a vendor-independent, standardized notation.

3 WEB TECHNOLOGIES
In the following, we introduce the standards and Web technologies
behind our tool. First, the OpenAPI specification is presented, then
the Interaction Flow Modeling Language (IFML) gets highlighted.
Finally, we show the W3C Web Components group of standards.

3.1 OpenAPI Specification
OpenAPI is an application program interface (API) documenta-
tion specification for RESTful Web services [10]. It allows creating
machine-readable interface descriptions for documenting, produc-
ing, consuming and visualizing APIs based on HTTP. Formerly
known as Swagger, it enjoys widespread support in the Web com-
munity, with various open source projects built around it. The
standardization is lead by the Open API Initiative under the hood of
the Linux foundation; it was founded in late 2015. Major companies
like Google, IBM and Microsoft contribute to the development of
the specification. TheAPIs.guruwebsite alone currently lists around
550 publicly available APIs with a Swagger/OpenAPI documenta-
tion1. OpenAPI documents describe an API in either the YAML or
JSON markup language; both formats can be translated into each
other without loss of information.

In the listing below, an example OpenAPI document is provided
in YAML format. It documents a simple address book Web service
1https://apis.guru/openapi-directory/

with /contacts as single resource and methods for retrieving and
deleting contacts. Particular contacts can be retrieved by supply-
ing an ID as path parameter. Table 1 gives a non-comprehensive
overview of the main concepts behind the properties of an OpenAPI
document.

openapi: 3.0.0
servers:
- description: Development Server

url: http://127.0.0.1:3000
info:

version: 1.0.0
title: Address Book Service
description: The API of the Address Book Service.

tags:
- name: contact

description: Everything about contacts.
paths:

"/contacts":
get:

tags:
- contact
description: Returns all contacts.
operationId: getContacts
responses:

'200':
description: All the contacts.
content:

application/json:
schema:

type: array
items:

"$ref": "#/components/schemas/Contact"
"/contacts/{contactId}":

get:
tags:
- contact
description: Returns a particular contact.
operationId: getContactById
parameters:
- in: path

name: contactId
description: ID of a contact.
required: true
schema:

type: integer
format: int64

responses:
'200':

description: A specific category.
content:

application/json:
schema:

"$ref": "#/components/schemas/Contact"
delete:

tags:

Table 1: OpenAPI Properties

Property Description
openapi OpenAPI version
info title and version of the document

servers list of concrete endpoint URLs
security authentication and authorization options
paths list of API paths, prefixed by server URL
tags groups paths into categories

components reusable details like parameter schemas

- contact
description: Deletes a contact.
operationId: deleteContactById
parameters:
- in: path

name: contactId
description: ID of a contact.
required: true
schema:

type: integer
format: int64

responses:
'200':

description: Contact deleted.
'404':

description: Contact not found.
components:

schemas:
Contact:

type: object
properties:

id:
type: integer
format: int64

name:
type: string

lastname:
type: string

email:
type: string

Swagger UI [20] is an open source software that automatically
generates a HTML5-based visualization and interaction frontend
from an OpenAPI file. The paths are presented as lists which are
grouped by tags. Interaction capabilities are very limited, in the
sense that developers can enter parameters into text boxes to test
client requests and server responses. Figure 1 shows a clipped
screenshot of the HTML documentation of the above mentioned
address book example, as generated by Swagger UI.

3.2 Interaction Flow Modeling Language
The Interaction Flow Modeling Language (IFML) is a visual domain-
specific modeling language for the visual design of abstract user
interactions and data flows within user interfaces [4]. Developed in
2012 and 2013, it is standardized by the Object Management Group

Figure 1: Address Book Example in Swagger UI

(OMG), the same standardization body that is also governing the
UML standard prevalent in software engineering. An IFML model is
a platform-independent representation of a graphical user interface
on devices such asmobiles, laptops orwearables. Figure 2 showcases
the IFML model of the very simple address book application. It
displays a list of contacts; upon selecting a particular contact, the
details are shown in a view right next to the list. Below the details,
a button allows deleting the selected contact. The concepts behind
the model elements are explained in the following.

An IFML model has one or more possibly nested View Container
at its root (“Address Book”). A View Container can represent for in-
stance an application window of a desktop application, or the main
view of a Web page. It can contain View Components standing for
certain user interface elements like a list or a table (“Contacts List”
and “Contact Details”). These model elements can be associated
with Events (“selected” and “delete”) or Actions (upon selecting the
“delete” button). An Event can be generated by the user or system,
for instance when clicking a button. It can trigger an Action, for
example the transition of one view to another. State transitions
and data flows are modeled as edges with Navigation Flows or Data
Flows. Navigation Flows are happening upon user interaction; it
then represents the transition from event to another view. Data
Flows represent any data passing from one element to another, for
example, the identifier of a selected menu item.

While the standard is platform-independent, it can be used to
generate concrete user interfaces. The standard document contains

Address Book

<<List>>
Contacts

<<Details>>
Contact

Delete
Action

View Container View Component

Navigation Flow Event

Action

Figure 2: Address Book IFML Model

multiple example mappings to user interface description languages,
for instance to the Windows Presentation Foundation, Java Swing,
and HTML. For example, a View Container may be translated to
an HTML <div> element, and the nested View Components to
respective child elements.

The official IFML website lists several commercial and open
source model editor implementations. Most notable, we refer to
IFMLEdit.org, a Web-based modeling tool able to generate Web
clients out of IFML models [3].

3.3 Web Components
A Web Component is a custom, reusable DOM element that can be
used in the DOM like a native HTML element. The Web Compo-
nent group of specifications is currently being standardized to be
part of the HTML and DOM specifications. The Custom Element
feature adds new methods to the DOM to register new elements
together with their identifier that needs to contain a dash in or-
der to differentiate existing, native tags like <div> and <p>. The
Shadow DOM encapsulates the scope of CSS styles and JavaScript
code to the internal children of a node. While these features are
being implemented in all major Web browsers, JavaScript polyfills
ensure backward compatibility of these APIs.

Web Components are a recent manifestation of the increased
adoption of component-based software engineering in the fron-
tend Web. Similar approaches on a JavaScript framework level are
Ember, React and Vue.js. In our implementation, we use the Google-
maintained Polymer library in version 2.0. It uses features of the
ECMAScript 6 language version like classes and mixins. Advanced
custom elements based on Polymer simplify Service Worker regis-
tration and caching, making Web applications possible that largely
work without an active Internet connection. Polymer also comes
with high-fidelity pre-designed template elements following the
Material Design guidelines [7]. They achieve high accessibility and
a familiar user experience across device types and display form
factors.

4 TRANSFORMATION APPROACH
After presenting the employed standards and technologies, we
describe the unter interface generation approach in this section. An
overview of the generation sequence from OpenAPI specification
over an IFML model to a concrete user interface based on HTML5
& JavaScript is given in Figure 3. The figure highlights concepts
that are transformed into each other with the same background
color (from left to right). In the OpenAPI specification, the URL of
a server endpoint is encoded through the combination of the server
property and an item in the paths array (purple/dark highlight).
This information is encapsulated in the Action of the IFML model.
The HTML5 & JavaScript instance contains the URL information
in the method that is called when submitting the form. The form
itself is represented by a View Component in the IFML model
(yellow/light background). It originates in the parameters property
of the endpoint. In the following, we present the above process in
detail and present further mappings between the API specification,
modeling and HTML5 & JavaScript implementation concepts.

4.1 API Documentation to Model
The first step in the user interface generation sequence involves
creating an IFML model from an OpenAPI document. The resulting
IFML model helps to abstract away platform-specific implementa-
tion details. Two types of transformation are already presented in
Figure 3. The server URL and the path properties of the OpenAPI
document is an integral part of every transformation that involves
data exchange between client and server. The combination of both
defines the server endpoint, for instance, to retrieve content or to
upload input from the client. While this information is relevant for
the later transformation to user interface code, it is not visualized
in the model. We therefore add semantic annotations to the model.
Another transformation type is generating View Components from
the parameters array of the documentation. OpenAPI follows the
JSON schema description language. It describes a JSON data struc-
ture and allows its automated validation. The two main data types
used to build structural hierarchies are objects and arrays. Objects
are a key-value collection of entries, while arrays are a list of items.
The key of an object is a string type, while the value and array items
can be any of object, array, string, number, boolean, or null. Here,
the first level of the data type hierarchy is of interest. If it is an
array, the generated model element is a List; objects are generated
as Form and Detail View Components. Other types, e.g. a REST
endpoint returning a single string, are transformed into plain View
Components.

4.2 Model to Frontend
In the second step, the generated IFML models are transformed into
the concrete user interface based on HTML5 & JavaScript. The basic
principle behind representing IFML concepts with HTML elements
is described in the official IFML specification annex E [19]. There,
the whole model is mapped to aWebSite element, which represents
the main <body> tag of an HTML page. Other mappings are for
instance View Containers as <div> tags, Form View Components as
equivalent <form> elements, and List View Components as <table>
tags.

István Koren�

servers:
url: http://abc.eu

paths:
/login:
get:
parameters:
- name: username
in: query
type: string

- name: password
in: query
type: string

<<Form>>
View Component

Action
LOGIN

Password

Username

OpenAPI Specification IFML Model HTML5 & JavaScript

Figure 3: Left to Right: Transformation of OpenAPI Specification (simplified) over IFML to HTML5 & JavaScript

We leverage these mappings, but also use the metadata added to
the model elements to generate JavaScript code, e.g. for submitting
form inputs to the correct server endpoint. To influence the final
layout of the generated user interface, further annotations can be
used, like the flow direction of children (vertical or horizontal).
These are transformed into CSS style instructions.

5 IMPLEMENTATION
In this section, we describe the implementation details of our Web
application. The app is built using HTML5 Web Components and
follows the general usability and accessibility guidelines of Material
Design, in particular for the generated user interfaces. This results
in a familiar look & feel across different frontends.

Figure 4 presents a screenshot of our tool running in the Chrome
browser. It shows the IFML model of the address book example
known from Figure 2. For demonstration purposes, we developed a
server backend and filled it with demo data. We additionally added
a toolbar as View Component. On the main level, the application
is split between a vertical menu bar on the left, and the main tool
window on the right. In the screenshot, the Interaction Flow Designer
is shown. Its layout is divided horizontally into three separate zones;
sidebars on the left and right and the canvas in between. In the
following, we explain each zone in detail.

5.1 Model Element Palette
On the left sidebar, the user can choose between a store of com-
ponents and a tree-based hierarchy of the nested model elements.
The store metaphor intends to build on the concept of an app store,
where model elements can be dragged into the canvas. At the bot-
tom of the left sidebar, an Add Elements button allows to reach the
OpenAPI Import Dialog. To integrate arbitrary API-enabled Web
services into our tool, it requires a URL to an API documentation.
Therefore, a URL to an OpenAPI specification file can be entered in
the dialog. Confirming the import triggers the first step of the user
interface generation process (cf. Figure 3). The tool then reads in the
specification file and generates both IFML modules and correspond-
ing HTML elements based on our predefined mapping, and shares

them in the application’s synchronized data store. The generated
model artifacts are entered into the Store’s list, called the palette.

5.2 Interaction Flow Model Editor
From the palette, model elements are dragged into the main canvas
in the middle of the Interaction Flow Designer. It shows the com-
plete model and allows manipulation of elements, like changing
the size or changing group inheritance. The canvas can be freely
zoomed in and out via buttons on the canvas toolbar on the top.
Both the canvas and the IFML model elements can be dragged
around. To create an event, it can either be dragged in from the
palette, or put in place after clicking the border of an element; when
hovering the mouse cursor over the button, the event is already
shown. The canvas is implemented with the help of a Scalable Vec-
tor Graphics (SVG) element in HTML. All model nodes and edges
have a direct vector representation. The main advantage is the di-
rect export capability as SVG file. Additionally, the SVG element
supports the export as a PNG file. Therefore, generated models
can be refined in external vector-based graphics applications, or
be reused in third party documents or Web applications as pixel
graphic. After selecting a model node with the mouse or by tap, its
properties are shown in the Properties panel on the right.

5.3 Properties Browser
The screenshot shows the position, size and title attributes of the
selected model element. Below the model element properties, the
properties of the transformation result are shown. For instance, in
the case of an IFML View Component, the CSS style attribute can
be influenced here. Below the properties panel, the HTML Preview
gives an impression of how the generated HTML interface looks
like. It also contains a button to open the generated frontend in a
new browser tab.

5.4 Collaboration Architecture
Synchronous collaboration in near real-time is achieved via the
Yjs library [11]. Near real-time refers to the humanly recognizable
threshold of around 100 ms. Yjs synchronizes arbitrary data types in

Figure 4: Interaction Flow Designer and HTML Preview

JavaScript based on a Commutative Replicated Data Types (CRDT)
algorithm [18]. It is able to exchange synchronization messages
over various protocols like XMPP, WebRTC and the InterPlanetary
File System [2]. We employ a WebSocket solution, where a cen-
tral entity on a server forwards messages to all connected peers.
The underlying collaboration architecture is based on spaces. A
space is a collection of synchronized nodes, similar to the hierar-
chical structure of the document object model (DOM). Each node
within a space has access to a globally synchronized data store;
the store is synchronized across application instances running on
distinct browsers. Additionally, each instance of a node gets access
to a node-specific shared data store. Nodes and edges are saved as
JavaScript objects. Model transformers, e.g. the one responsible for
the generation of HTML5 from IFML models, directly work on the
synchronized data store. The same principle applies to the proper-
ties sidepanel on the right; it works on the shared data structures:
changes are propagated to the model editor via the synchronized
JavaScript object and then applied.

5.5 End-User-Oriented Frontend Designer
We also implemented a HTML5 editor as an end-user-oriented
view. The visual structure of the editor follows the Interaction Flow
Designer, but instead of IFML model elements, in the palette, it
contains actual HTML widgets like a toolbar, an image element

and a button. The HTML user interface in the center is updated in
parallel with the underlying IFML model. HTML widgets can be
selected; their shared properties are then shown in the property
browser on the right. In the background, the HTML editor works
on the shared IFML model, i.e. when an HTML widget is dragged
& dropped to the HTML preview, in the background a respective
IFML View Container or View Component is added to the model
which then triggers the transformation into HTML.

6 DISCUSSION
After presenting the conceptual architecture and our implementa-
tion, we discuss the strengths and weaknesses of our approach in
this section.

The greatest strength of our approach is the strong focus on open
standards. This applies to all layers starting from the OpenAPI spec-
ification governed by the OpenAPI Initiative and the Interaction
Flow Modeling Language of the Object Management Group, to
the HTML5 and SVG frontend standards by the W3C. Employing
Material Design guidelines helps us in accessibility aspects, as well
as in targeting various device form factors by following responsive
design best practices.

One of the key reasons for employing models in software engi-
neering is the abstraction of concrete interfaces, designs and other

implementation aspects. In this regard, the lack of contextual pa-
rameters that are abstracted away does also apply to IFML. For
instance, some concepts like the obfuscation of password input
fields cannot be automatically derived from an OpenAPI documen-
tation. In this particular case, manual adjustments are essential,
which can be performed in the HTML editor view of our tool. An-
other major drawback is that currently, security parameters like an
OAuth access token described within the OpenAPI specification
are not handled by our tool. We are confident to be able to tackle
these technological drawbacks by extending the prototype in the
future. On a more general level, automation may lead to monoto-
nous stencil-type Web applications where the craft of designers is
no longer demanded. However, on the contrary, we believe that it
is precisely by eliminating monotonous works that the creativity
of designers can be fostered. On the long run, overcoming develop-
ment aspects may trigger the end-user-driven creation of a huge
variety of personal applications [14], where developers focus on
delivering extensively documented APIs.

7 CONCLUSION
In this article we presented a tool for generatingWeb user interfaces
with the help of API documentation. We therefore conceptualized
a two-step process that first transforms OpenAPI documentation
to an intermediary IFML model; the second step then generates
HTML5 & JavaScript frontends. The implementation resulted in
a collaborative Web tool built on open standards like SVG. It pro-
vides an Interaction Flow Designer as well as a HTML editor for
style-based adaptation of the generated frontends. The OpenAPI
documentation format is increasingly popular in the realm of REST
API developers. Our tool helps automating the development of Web
application prototypes, so designers and even end users can abstract
the implementation details away.

Code generation from OpenAPI documents is helpful in other
areas as well; we are currently investigating its usage in the visu-
alization of data provided by REST APIs. Future work includes a
component registry based on JSON schema matches that can help
build an ecosystem of available frontend components. Based on the
property schemes of the API, designers can download compatible
elements from a repository to embed them in their Web apps. To
make our tool more useful in real-world contexts, we plan to add
user management and awareness functionalities, and the introduc-
tion of Progressive Web Application concepts via a Service Worker
responsible for cashing generated Web frontends.

We strongly believe that automation is one of the keys to tackle
challenges in the creation of situational applications for the long
tail [1]. Particularly, we are interested in application cases in the
Internet of Things. Beyond the use cases, we are researching further
means of closing the gaps between developers and end users. An
extensive end user evaluation will contribute to these intentions.
Finally, the peer-to-peer background of our work via the Yjs library
is an ideal companion to existing distributed Web initiatives like
the InterPlanetary File System (IPFS) [2] and Solid [15].

Acknowledgments
The research leading to these results has received funding from the
European Research Council under the European Union’s Horizon
2020 Programme through the project “WEKIT” (grant no. 687669).

REFERENCES
[1] Chris Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of

More. Hyperion, New York.
[2] Juan Benet. 14.07.2014. IPFS - Content Addressed, Versioned, P2P File System.

(14.07.2014). https://arxiv.org/abs/1407.3561
[3] Carlo Bernaschina, Sara Comai, and Piero Fraternali. 2017. IFMLEdit.org: Model

Driven Rapid Prototyping of Mobile Apps. In 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILESoft). 207–208.
https://doi.org/10.1109/MOBILESoft.2017.15

[4] Marco Brambilla and Piero Fraternali. 2014. Interaction Flow Modeling Language:
Model-Driven UI Engineering of Web and Mobile Apps with IFML. Morgan Kauf-
mann.

[5] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. 2003. A Unifying Reference Framework for
multi-target user interfaces. Interacting with Computers 15, 3 (2003), 289–308.
https://doi.org/10.1016/S0953-5438(03)00010-9

[6] JS Foundation. 2018. Node-RED. (2018). https://nodered.org/ [Online; accessed
February 28, 2018].

[7] Google. 2018. Material Design Guidelines. (2018). https://material.io/guidelines/
[Online; accessed February 28, 2018].

[8] Jiang He and I-Ling Yen. 2007. Adaptive User Interface Generation for Web
Services. In IEEE International Conference on e-Business Engineering (ICEBE’07).
536–539. https://doi.org/10.1109/ICEBE.2007.82

[9] IFTTT Inc. 2018. IFTTT. (2018). https://ifttt.com/ [Online; accessed February
28, 2018].

[10] OpenAPI Initiative. 2018. The OpenAPI Specification. (2018). https://www.
openapis.org/ [Online; accessed February 28, 2018].

[11] Kevin Jahns. 2018. Yjs. (2018). http://y-js.org/ [Online; accessed February 28,
2018].

[12] Farzad Khodadadi, Amir Vahid Dastjerdi, and Rajkumar Buyya. 2015. Simurgh:
A framework for effective discovery, programming, and integration of services
exposed in IoT. In 2015 International Conference on Recent Advances in Internet of
Things (RIoT). 1–6. https://doi.org/10.1109/RIOT.2015.7104910

[13] Giuseppe La Torre, Salvatore Monteleone, Marco Cavallo, Valeria DAmico, and
Vincenzo Catania. 2016. A Context-Aware Solution to Improve Web Service Dis-
covery and User-Service Interaction. In 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 180–187. https:
//doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0047

[14] Henry Lieberman, Fabio Paternò, and Volker Wulf (Eds.). 2006. End User Devel-
opment. Human-Computer Interaction Series, Vol. 9. Springer, Dordrecht.

[15] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba, Sarven
Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim Berners-Lee. 2016.
A Demonstration of the Solid Platform for SocialWeb Applications. In Proceedings
of the 25th International Conference Companion on World Wide Web, Jacqueline
Bourdeau, Jim A. Hendler, Roger Nkambou Nkambou, Ian Horrocks, and Ben Y.
Zhao (Eds.). 223–226. https://doi.org/10.1145/2872518.2890529

[16] E. Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai.
2007. A Domain-Specific Language for Web APIs and Services Mashups. In
Service-Oriented Computing – ICSOC, Bernd J. Krämer, Kwei-Jay Lin, and Priya
Narasimhan (Eds.). Lecture Notes in Computer Science, Vol. 4749. Springer Berlin
Heidelberg, 13–26. https://doi.org/10.1007/978-3-540-74974-5{_}2

[17] Tobias Nestler, Marius Feldmann, Gerald Hübsch, André Preußner, and Uwe Jugel.
2010. The ServFace Builder - A WYSIWYG Approach for Building Service-Based
Applications. InWeb Engineering, Boualem Benatallah, Fabio Casati, Gerti Kappel,
and Gustavo Rossi (Eds.). Lecture Notes in Computer Science, Vol. 6189. Springer,
Berlin, Heidelberg, 498–501. https://doi.org/10.1007/978-3-642-13911-6_37

[18] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016. Near
Real-Time Peer-to-Peer Shared Editing on Extensible Data Types. In GROUP 2016.
ACM. https://doi.org/10.1145/2957276.2957310

[19] Object Management Group. 2015. Interaction Flow Modeling Language. (2015).
http://www.omg.org/spec/IFML/

[20] SmartBear Software. 2018. Swagger UI. (2018). https://swagger.io/swagger-ui/
[Online; accessed February 28, 2018].

[21] Mandana Vaziri, Louis Mandel, Avraham Shinnar, Jérôme Siméon, and Martin
Hirzel. 2017. Generating Chat Bots from Web API Specifications. In The 2017
ACM SIGPLAN International Symposium, Emina Torlak, Tijs van der Storm, and
Robert Biddle (Eds.). 44–57. https://doi.org/10.1145/3133850.3133864

https://arxiv.org/abs/1407.3561
https://doi.org/10.1109/MOBILESoft.2017.15
https://doi.org/10.1016/S0953-5438(03)00010-9
https://nodered.org/
https://material.io/guidelines/
https://doi.org/10.1109/ICEBE.2007.82
https://ifttt.com/
https://www.openapis.org/
https://www.openapis.org/
http://y-js.org/
https://doi.org/10.1109/RIOT.2015.7104910
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0047
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0047
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1007/978-3-540-74974-5{_}2
https://doi.org/10.1007/978-3-642-13911-6_37
https://doi.org/10.1145/2957276.2957310
http://www.omg.org/spec/IFML/
https://swagger.io/swagger-ui/
https://doi.org/10.1145/3133850.3133864

	Abstract
	1 Introduction
	2 Related Work
	3 Web Technologies
	3.1 OpenAPI Specification
	3.2 Interaction Flow Modeling Language
	3.3 Web Components

	4 Transformation Approach
	4.1 API Documentation to Model
	4.2 Model to Frontend

	5 Implementation
	5.1 Model Element Palette
	5.2 Interaction Flow Model Editor
	5.3 Properties Browser
	5.4 Collaboration Architecture
	5.5 End-User-Oriented Frontend Designer

	6 Discussion
	7 Conclusion
	References

