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Abstract. Learning analytics in formal learning contexts is often re-
stricted to collect and analyze data from students following curricula
through a learning management system. In informal learning, however,
a deep understanding of learners and entities interacting with each other
is needed. The practice of exploring these interactions is known as com-
munity learning analytics. Mobile devices, wearables and interconnected
Industry 4.0 production machines equipped with a multitude of sen-
sors collecting vast amounts of data are ideal candidates to capture the
goals and activities of informal learning settings. What is missing is a
methodological approach to collect, manage, analyze and exploit data
coming from such an interconnected network of artifacts. In this paper,
we present a concept and prototypical implementation of a framework
that is able to gather, transform and visualize data coming from Indus-
try 4.0 and wearable sensors and actuators. Our collaborative Web-based
visual analytics platform is highly embeddable and extensible on various
levels. Its open source availability fosters research on community learning
analytics on a broad level.

Keywords: Community Learning Analytics, Visual Analytics, Indus-
try 4.0, Internet of Things, Wearables

1 Introduction

Industry 4.0 refers to a paradigm shift currently taking place in industrial pro-
duction towards the use of a combination of Internet and future-oriented tech-
nologies [7]. On the one hand, triggers are social, economic and political changes;
on the other hand, a number of technologies like apps, 3D printers and the In-
ternet of Things (IoT) pushes innovation in industry. Beyond the industrial con-
text, the availability of mobile computing devices has also changed our personal
lives remarkably over the last years. Smartphones, tablet computers and smart
watches have become commodities and are used for various use cases. Both In-
dustry 4.0 appliances and personal smart devices are equipped with a multitude
of sensors that produce a lot of data. Wearable computers build the vanguard,
with sensors that are tightly integrated with body functions, like heart rate sen-
sors and eye trackers. In this context, the term Internet of Things represents

This is the authors' preprint version of the paper appearing in Proc. of Immersive Learning Research Network Conference 2017 (iLRN 2017), Coimbra, Portugal.© 2017 Springer



2 István Koren et al.

the idea that everyday devices become interconnected to form a huge network
of artifacts that is closely embedded into social interactions. However, the speed
of innovation is currently hampering the adoption of a compatible standard; the
challenges lie in the sheer number of devices, protocols, standards and platforms.

For technology enhanced learning researchers, the broad availability of IoT
technologies in Industry 4.0 and wearable contexts opens new doors to explore
the possibilities and limitations of applying wearables for various workplace
learning settings. Research questions include how to leverage body and device
sensors and, more generally, contextual information to provide and sustain ade-
quate services to learners. Traditional formal learning analytics often targets the
interactions of learners with learning management systems while neglecting the
context and environment of learners. In informal learning contexts, goals and
activities are not fixed in a curriculum; they may be more short-term [5]. While
white-collar knowledge worker communities such as the insurance claims proces-
sors described by Wenger [11] leave analyzable traces in the software they are
using, the digital footprints of industrial blue-collar machine workers are typi-
cally more fragmented and numerous across machines and wearable sensors. We
realize that methods known from formal learning analytics are not applicable for
the vast amount of heterogeneous data sources available from sensors. With new
types of sensors and subsequently new kinds of data available on a regular basis,
we need a cross-cutting methodological and sustainable approach for targeting
all kinds of possible scenarios. In this paper we therefore present the Social Web-
based Environment for Visual Analytics (SWEVA), a conceptual approach and
prototypical implementation of services able to retrieve and visualize data from
heterogeneous data sources such as machine data or wearable sensors. It is ex-
tensible on various levels to handle a wide variety of current and future protocols
and standards in the IoT realm. Within the framework, advanced social network
analysis tools can be accessed, such as overlapping community detection and
expert identification to significantly drive forward community evolution. Due to
its Web-based nature, learners are able to open the application in any browser
to take part in their communities’ analytical undertakings. Ultimately, our plat-
form for analyzing learning services for Industry 4.0 and wearable sensors may
help to significantly increase the relevance and applicability of learning services
in this domain.

The paper is organized as follows. First, we give the motivation for our re-
search in Section 2 and highlight related work in Section 3. We then present the
concept in Section 4. Section 5 describes the prototypical implementation that
is evaluated in Section 6. The paper is concluded in Section 7 with an outlook
on future work.

2 Motivation

Learning with Industry 4.0 appliances and wearables is different from traditional
classroom based learning in various ways. Mainly, it is not tied to a particular
location and time. It may leverage the actual context of the user, spanning from
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detecting the actual physical location and even tool the user is employing, up to
measuring body parameters like the current heart rate. Industry 4.0 appliances
and wearables offer an enormous amount of data and are therefore usable by a
huge variety of learning services. Examples of such data are inventory trackers
and alerts on incorrect operation. In comparison, body-worn wearable sensors
may capture the heart rate, arm movements or track the eye gaze. However, the
more data is available, the more complex it is to analyze and reason upon it.
What is needed is a uniform approach for (real-time) learning analytics. One
of the challenges in reasoning and researching on this data lies in the high de-
gree of context sensitivity and interdependency of data coming from machine
and human data sources. For example, a higher stress level identified through
a significantly increased heart rate may be the cause or effect of machine mal-
function. On the technical level, currently different implementations of sensor
networks often struggle with a myriad of standards for accessing the data and
related intercompatibility problems. For instance, standards and protocols for
IoT include MQTT, XMPP, CoAP, Bluetooth, and Zigbee, amongst many oth-
ers. However, we are observing a consolidation towards open Web protocols to
make the data available on the human-facing side. Specifically, this means that
while the actual machine-to-machine communication happens over proprietary
protocols, most commercial off-the-shelf solutions come with a gateway that
translates device-specific communication channels to the open HTTP Web stan-
dard, so that it can be accessed by apps running on smartphones. That is the
main point of contact of our framework for getting device data into our analytics
pipeline to perform visual analytics tasks.

Visual analytics (VA) is the “science of analytical reasoning facilitated by in-
teractive human-machine interfaces” [4]. It is a multidisciplinary approach cover-
ing data science, data management, data analysis, human computer interaction
and decision support amongst many others. The VA process is displayed in Fig-
ure 1. It starts with collecting and optionally transforming data. The goal is to
gain knowledge through building models and visualize them. Thereby, the vi-
sual part remains highly adaptable based on user interaction. Knowledge can be
used to adapt and improve the monitored artifacts, or to calibrate the selection
of data sources.

In informal learning contexts, there is a lack of institutional rules which
induces the negotation of roles in communities based on reputation and exper-
tise [5]. Community learning analytics is therefore concerned with identifying
expertise within a community and in comparison with other communities. A
learning system able to discover the experts within a community is empow-
ered to transfer knowledge from experienced users to new staff. For instance,
wearable sensors may capture the expert fulfilling a certain task by operating a
machine. Later, the recordings may be replayed to less experienced users through
augmented reality devices. The access to expert identification [12] and expert
recommender algorithms [2], along with the visualizations of their outputs, is
therefore a crucial requirement for our system. (Overlapping) community detec-
tion algorithms in turn are key to expert identification systems, as they are able
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Fig. 1. Visual Analytics Process [4]

to distinguish between the core and the periphery of a community. Moreover, the
propositions of visual analytics are twofold. On the one hand, the effectiveness
of the measured knowledge transfer may be visualized on a dashboard. On the
other hand, visual cues gained through analytics can themselves be embedded
right into the performance augmentation process. For instance, augmented real-
ity devices may integrate security alerts coming from self-managed machines in
the field of vision.

Our methodology presented in the following reaches from the gathering and
transformation of data coming from innovative wearable-based learning services
up to the support of its usage via (near) real-time visual analytics.

3 Visual Analytics Platforms for Internet of Things Data

In this section, we reference related research and commercial work for visual ana-
lytics of heterogeneous IoT data. In particular, we look at Web-based dashboards
to make device-specific data available for evaluation on the Web.

IBM Watson IoT Platform is a commercial visual analytics platform for the
Internet of Things [3]. The Web application offers IoT analytics features for de-
vice management and analytics applications. Devices can be configured to send
data into the cloud using the MQTT protocol. Applications can then interact
with the data. Finally, collected data can be visualized in a configurable dash-
board that provides location, live property values as well as alerts caused by
user-defined rules.

Bosch provides their own IoT solution called the Bosch IoT Suite [1]. Using
the provided development toolbox, users can create their own IoT applications.
The platform offers an IoT Hub component that transports IoT data from sensors
to the applications developed by the customer.

Pheme is a cloud-based service that repurposes Web analytics services for
IoT data collection and visualization [8]. Web analytics usually refers to the
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collection and evaluation of data that users produce when visiting websites. In
their work, Mikusz et al. mapped typical Web analytics properties to IoT events.
Pheme consists of four different modules: import, preprocessing, visualization
and reporting.

We presented three representatives of visual analytics systems that process
data coming from heterogeneous data sources. In the area of learning analyt-
ics for informal learning, we mainly find approaches displaying data in a pre-
configured dashboard. A representative of this research is Social Semantic Server
Dashboard by Ruiz-Calleja et al. [10]. It is able to collect and visualize data col-
lected from Social Semantic Server, a semantically-enriched artifact-actor net-
work. What remains unclear, is the applicability of the dashboard to accommo-
date dynamic real-time data.

What became evident in our research survey is the lack of tools specifically
designed for learning analytics for heterogeneous data sources. In particular, we
miss approaches integrating social network analysis methods like (overlapping)
community detection and expert identification. The existing solutions further do
not support the dynamic export and recomposition of the visualization widgets
into third-party websites. In the following, we present our conceptual approach
to fill these gaps.

4 Data Processing and Analytics Pipeline

The main building block and reasoning behind our approach is to leverage open
Web technologies over the whole chain from accessing device data to analyzing it.
Our system collects data from heterogeneous sources through Web technologies
and makes it available via a browser-based platform that visualizes the data
in near real-time. The complete pipeline and its layers are shown in Figure 2
from top to bottom in chronological order. The platform is extensible in terms
of more data sources and visualization options. In the following, we explain the
three main additions of our framework in detail, namely the core framework, the
model editor and the visualization frontend.

As shown in Figure 2, the pipeline starts at the data source level. Data sources
can be anything from real Industry 4.0 machines, body-worn wearable sensors
or input captured on smartphones. Besides, data can also be retrieved from any
website, such as open data provided by governmental and non-governmental
organizations. The actual data format like JSON or XML is not yet important
in this step.

The next level is the data aggregation tier. Here, data that is typically not
available over the Internet is made available on repositories. For instance, sensors
that are using heterogeneous exchange protocols may upload their capturings to
a common IoT database. This step also comprises 3rd party services, such as
sentiment detection of discussion forums or map providers.

After the first steps that make the data available on the Web, the collabo-
rative model editor comes into play. It is a tool for creating and editing visual-
ization pipeline models that define the processing steps from raw data to highly
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Fig. 2. Data Processing Pipeline

interactive visualizations. These models are graphs consisting of nodes and edges
connecting the nodes. Per definition, these need to be directed acyclic graphs
(DAGs). DAGs consist of a finite number of nodes and edges with each edge di-
rected from one node to another, without any cyclic loops. There are two types of
nodes available in the collaborative model editor; first, data processing nodes and
second, input nodes. Data processing nodes can either retrieve raw or processed
data from a data source, e.g. a REST-based Web interface or a Websocket-based
push server, or they perform a calculation, e.g. transforming data. Input nodes
represent parameters that influence the data retrieval or visualization options.
They represent the screws to be adjusted during the visualization. An example
is filtering which data is shown in a visualization.

The data pipeline remains open for continuous refinement during the visual
analytics process. Created models can be grouped into compositions and ex-
ported for later use. That way, recurring, complex data transformations only
need to be modeled once; later, they can be imported into other visualization
pipelines.

Once the model is ready, the core framework comes into play. The core frame-
work is responsible for running the pipelines defined in the model. When a model
is executed for the first time, the core framework collects the default values of
the user input nodes and then runs the code within the data processing nodes. It
collects and transforms data using Web services or local computations. Multiple
modules within a model can be executed concurrently. At the end, it calculates
the final output of the model execution and makes it available to the visualiza-
tion. The visualization tool is responsible for displaying the results of the model
execution. It provides user interface elements for editing the user input variables.
Upon changes to the user input, it calls the core framework to recalculate the
results, which in turn triggers the recalculation of the visualization. In the next
section, we explain the prototypical implementation of the Web-based system
for visual analytics.
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5 Social Web-Based Environment for Visual Analytics

For the prototype implementation, we use a component-based software archi-
tecture. The frontend is developed using the state-of-the-art Web components
group of W3C standards. Similar to the efforts of earlier widget-based frontends,
Web components allow the definition and encapsulation of user interface widgets
into reusable software packages. They can later be embedded into arbitrary web-
sites, keeping their functionality. For executing long-running data retrieval and
transformation operations, we set up a microservice-based backend. Like Web
components on the frontend, microservices encapsulate well-described function-
alities into their own software packages for later reuse in a different context.
Figure 3 shows a screenshot of the whole Web application. The instance por-
trayed in the figure displays the processing model for retrieving development
data from an open source repository on GitHub. Specifically, the model first
retrieves raw data in JSON format from a public Web service. The dataset con-
tains dates as index and the number of lines added or removed as values. This
dataset is then separated into additions and deletions via two processing nodes.
Finally, the data is fed into a line chart that can be seen on the right of the
figure. In the following, we explain the details of the implementation based on
the conceptual parts described in the section above.

Fig. 3. Screenshot of the Web-Based Visual Analytics Tool

The collaborative model editor is implemented as a standalone Web com-
ponent, thus it is embeddable into arbitrary websites. The interface consists of
a model viewer and editor, which we developed using the open source jsPlumb
Toolkit1. The jsPlumb Toolkit enables developing graph-based modeling appli-
cation for Web browsers. On the left side, we added zoom controls to be able

1 https://jsplumbtoolkit.com/ last accessed in April, 2017
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to look into details of the model. On the right side, a toolbar gives access to
various model-related functionalities, like adding input nodes or data processing
nodes. To simplify reuse, we added a library of pre-defined data processing nodes
which can be browsed through in the interface. The visualization types, e.g. line
chart, stacked area chart or bar chart, can be selected in the toolbar as well.
Finally, the update model button generates the data visualization pipeline as
JSON document and hands it over to the core framework.

The core framework is responsible for running the data retrieval and trans-
formation pipeline. It is developed in JavaScript and can thus run in browser
or server environments, the latter using a NodeJS instance. We also developed
an execution service to be able to run it within our Java-based peer-to-peer mi-
croservice framework called las2peer [6]. After the core framework has generated
an output JSON file, it is handed over to the visualization tool.

The visualization tool consists of a viewer where various charts can be loaded
and displayed. It inherently supports zooming and panning operations; besides,
the diagrams it loads may offer further functionalities like expanding or collaps-
ing a tree structure or limit the displayed key space to a certain time period.
Similar to the model editor, the right side features a toolbar. It contains the
controls defined as user inputs. Currently, we support text, number, numerical
slider, toggle, dropdown and fixed value inputs. The inputs are automatically
validated according to their type. For instance, user inputs to numerical fields
are checked whether they represent numbers; if not, they are not processed. In
case of such a validation error or other malfunctions during running the pipeline,
an error is displayed in a logging pane at the bottom of the screen.

As stated above, both frontend parts are developed using Web components.
One of the main advantages are their reusability. After importing and declaring
them in HTML, they can be used as normal elements on the page. We use the
Polymer2 library from Google, as it adds compatibility to various browsers, some
syntactical sugar, and most importantly, a consistent set of pre-designed user
elements adhering to the Material Design guidelines3. This enabled us focussing
on functionalities, rather than browser quirks and accessibility issues.

6 Preliminary Evaluation

To validate our results, we performed preliminary technical and usability evalu-
ations of our system. For reproducibility reasons, we used an IoT dataset from
hurricane Katrina [9], one of the most severe natural disasters in the history of
the United States. The dataset contains multiple thousand measurements of sev-
eral weather stations. In our scenario, the data was replayed through an XMPP
server, and our visual analytics frontend was connected to the XMPP server.
For up to 30 nodes, the near real-time graph widget rendered the graph at a
speed of around 55 frames per second. When adding more than 30 nodes, the
visualization began to slow down. For around 70 clients, the frame rate dropped

2 https://www.polymer-project.org/ last accessed in April, 2017
3 https://material.io/ last accessed in April, 2017
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to around 30 frames per second. When monitoring a network with 110 clients,
we still measured 20 frames per second.

We additionally invited 12 volunteers out of our pool of bachelor and master
students of computer science and performed a usability study. In total, we held
six evaluation sessions with two participants in each. The participants were asked
to collaboratively generate near real-time visualizations using the IoT dataset
described above. We provided two laptops running on Windows 10, with re-
cent Chrome browsers. A third laptop hosted the frontend and backend services
as well as the evaluation network simulation. After the modeling of the data
pipeline, the participants were asked to identify certain nodes in the analytics.
For that, they had to interact with the visualization. Finally, the users had to
fill in a survey. Although most participants knew about the Internet of Things
paradigm, only few were familiar with the details of IoT protocols and visual
analytics. All users agreed that for the given analytics tasks, extracting the in-
formation via the graphs was efficient and easily comprehensible. Furthermore,
the availability of near real-time visualizations was helpful in understanding the
inner working of the IoT network. Minor usability issues detected in our tests
like finding the right buttons could be solved by changing the icon and offering
tooltips. Overall, the preliminary evaluation showed the usefulness particularly
in scenarios where a large set of data is available.

7 Conclusion and Future Work

The Internet of Things, Industry 4.0 and in particular wearable computing are
currently introducing a new era of ubiquitous computing. For researchers in
technology-enhanced learning, this opens the door to a whole new way of an-
alyzing learners’ behaviors especially in informal learning settings. By reading
and interpreting sensor data in near real-time, learning services can be adapted
and continuously improved more precisely. Yet what is missing is a cross-device
infrastructure for setting up these kind of community learning analytics services.
In this paper, we presented a highly flexible approach to visualize live data com-
ing from IoT sensors in Industry 4.0 contexts. Our simple Web-based visual
analytics tool is able to capture and transform data coming from a wide vari-
ety of sources and formats. It can be arbitrarily extended both in the execution
phase and in the visualization parts. We performed an initial evaluation from
the technical and usability perspectives that lead to promising results.

On the practical side, we are working on a library of prepackaged modules
to cover a wide variety of data sources. Already, we provide modules for retriev-
ing JSON, XML, MQTT and XMPP protocol data, covering a majority of IoT
gateways and learning management system APIs. Current challenges include tak-
ing into consideration aspects like data quality, and showing uncertainty in the
visualizations. As we developed the concept and implementation, we neglected
privacy aspects to a large part, thus ethical and moral issues need to be discussed
alongside evaluations. Possible future tasks include machine learning techniques
to further automate analytics tasks. The tools are available open source on our
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GitHub repository4. We would like to open the academic discussion to research
new use cases in the area of informal learning.

Acknowledgements. The research leading to these results has received fund-
ing from the European Research Council under the European Union’s Sev-
enth Framework Programme project “Learning Layers” (grant no. 318209) and
the European Union’s Horizon 2020 Programme through the project “WEKIT”
(grant no. 687669).

References

1. Bosch: Bosch’s IoT platform (2017), https://www.bosch-si.com/de/iot-
plattform/bosch-iot-suite/homepage-bosch-iot-suite.html

2. Drachsler, H., Hummel, H.G.K., Koper, R.: Personal recommender systems for
learners in lifelong learning networks: the requirements, techniques and model.
International Journal of Learning Technology 3(4), 404–423 (2008)

3. IBM: Watson IoT Platform (2017), https://www.ibm.com/internet-of-
things/platform/watson-iot-platform/

4. Keim, D.A., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melançon,
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