
The Direwolf Inside You: End User Development
for Heterogeneous Web of Things Appliances

István Koren and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University, Ahornstr. 55, 52056 Aachen, Germany

{koren,klamma}@dbis.rwth-aachen.de
http://dbis.rwth-aachen.de

Abstract. Mobile computing devices like smartphones have become a
commodity. They are very convenient when connecting to ubiquitous
Web of Things (WoT) appliances. However, WoT manufacturers are chal-
lenged to provide Web application interfaces for a multitude of mobile
platforms in a short time. Moreover, end users are required to install ded-
icated Web apps for giving them access to these emerging technologies.
To overcome this situational overburdening efforts, end user development
in the form of component-based Web mashups has already been applied
successfully in various domains. In this paper, we envision a framework
for letting users create situational applications for opportunistic device
usage. We explore the recent Web Component group of W3C recommen-
dations as a foundation for peer-to-peer cross-platform, cross-application
and cross-user Web applications. Our preliminary experiences may help
the Web engineering community to build better Web infrastructures for
a heterogeneous device landscape.

Keywords: Web of Things, End User Development, Web Components

1 Introduction

Over the last years, we have seen a massive growth in the number of smartphones
used. They enable us to instantly access any kind of information while on the go;
millions of platform-specific, native apps are serving individual needs like games,
news, office and social networking applications. More recently, we encounter an
exponentially growing number of everyday devices connected to the Internet: on-
line TVs, intelligent power sockets, and many other ambient technologies form
the basis of the Internet of Things, or Web of Things (WoT) in the context of
the Web. Already, we are confronted with a multitude of WoT appliances, from
interactive hotel rooms to conference venue systems that can be controlled from
mobile devices. However, they often either require using provided hardware or in-
stalling a dedicated app on a personal mobile computer. Both options come with
difficulties: We either have to learn how to use the provided input modalities, or
we need to go to an app store to download an app. Thus, the time-consuming
access methods of these WoT resources are not adapted to the short-term situ-
ational context they are used in. Additionally, many companies producing these

This is the authors' preprint version of the paper appearing in Proc. of 16th International Conference on Web Engineering (ICWE16), Lugano, Switzerland, pp. 484 -491.
© 2016 Springer



II

appliances are from industries not traditionally linked with the IT and software
world; they are confronted with enormous economical challenges to provide user
interfaces to a wide variety of end user smartphones and wearables. Yet, what
unites both the WoT world and end user mobile tools is the universal access to
the Internet, and in particular the standardized World Wide Web with browsers
accessing HTML5 resources served over the HTTP protocol.

Software engineering traditionally strives to create development artifacts that
are maintainable and reusable across projects. In the Web context, cleanly-cut
responsibilities and functionalities are visible in the agile development of mi-
croservices and in the composition of Web 2.0 mashups [1]. These standards-
based HTML5 mashups are ideal platforms for various situational use cases [2].
In this regard, End User Development (EUD) is commonly defined as a method-
ology to allow users of software systems to act as non-professional developers to
create, modify or extend software artifacts [3].

In this article, we explore the research question, what infrastructure is needed
for component-based Web engineering practices to unite the scattered world of
mobile (smartphone and wearable) apps and everyday devices connected to the
Web of Things. We embed our research in the field of End User Development in
Section 2 and present related work. Section 3 discusses the extension of DireWolf,
a platform for multi- and cross-device Web user interfaces. By including user
interface elements referenced or served directly by WoT devices, our framework
acknowledges the heterogeneity and fast evolution of device-specific proprietary
APIs. Section 4 highlights implementational aspects building on the recent Web
Components group of W3C recommendations1. Section 5 concludes the article
by presenting a preliminary evaluation and giving an outlook on future work.
We are confident, that using standardized HTML5 components will in the long
run ease the development of user interfaces for various device types while at the
same time liberating users from the tedious task of having to install separate
apps for interacting with diverse everyday objects.

2 End User Development for the Web of Things

In traditional software engineering, usually developers are creating software to
be used by users. The idea of End User Development is to break with this
classical roles and give more power to the users to design their application. It is
based on the idea, that end users know the best about their surroundings - the
context, the tools and their constraints. Spreadsheets are generally considered
as the first broad emergence of the EUD paradigm [4], in that users are creating
formulas that resemble algorithms to calculate values based on fields. Since the
early findings, a broad range of research has been carried out in the field, up to
economical topics [5, 6].

Situational apps created for short-term needs in highly specialized environ-
ments are ideal candidates for End User Development [3, 2]. In that sense, they

1 https://www.w3.org/standards/techs/components



III

resemble the characteristics of the Long Tail [7]. Originally conceived in the area
of e-commerce, standing for the idea that the bulk of sales is not in the few top
items but in the rest, the term is now also used for the large number of niche
communities with specialized needs. Especially composite Web applications are
now being associated with the Long Tail [8], as they allow context-dependent
situational usage.

2.1 Related Work for the Web of Things

The world of everyday objects connected to the Internet is scattered with vendor-
and device specific apps. On the protocol level, there exists a bewildering variety
of standards such as XMPP, MQTT, CoAP and proprietary pseudo-standards
like Z-Wave and EnOcean. The Web of Things by Guinard et al. [9] stands
for the idea that every resource in the Internet of Things is accessible over the
HTTP protocol, either directly or over gateways. In the WoT concept, the devices
provide both, a JSON representation and a basic HTML interface [10], however
advanced user interface concepts are not in the prime scope of the articles.

More recently, the Physical Web2 approach by Google is based on the concept
that devices broadcast a URL via Bluetooth that can be read out by users’
mobile devices, pointing to a cloud-based application able to interact with the
device through WebSockets. While this concept allows to access WoT devices
through arbitrary Web-capable clients, it does not cater for building coherent
applications out of composite parts; i.e. for controlling dozens of devices in a
smart home, various bookmarks need to be kept around.

Snap-To-It is a platform for opportunistic discovery of devices based on pho-
tographs [11]. The authors performed user studies to find out the preferred way of
consumers to interact with on- and offline devices in everyday situations. Neither
QR codes nor list-based approaches were the preferred method of interaction;
instead, photographs of hardware, software and physical artifacts like maps were
favored and later implemented. To support the system, additional computing-
intensive resources are needed in the network for the image discovery. While
our work would benefit of the advanced object recognition capabilities to make
connecting to objects easier, we take the coupling for granted and focus on the
composability on the user interface level.

Multiple approaches for component-based Web applications have emerged
over the last years in different domains, for instance the OMELETTE platform
for telco mashups [12] and the ROLE SDK for personalized learning environ-
ments [13]. Special requirements arise as soon as mobile devices are included in
these mashups. While advances have been made in the overlapping area of Dis-
tributed User Interfaces, another topic that profits by componentized interfaces,
existing work has focused on native applications [14, 15] and/or desktop-based
composition paradigms [16, 15]. What is missing, is a framework that spans var-
ious types of Web-capable devices. In the next section, we discuss our vision
towards device-agnostic componentized Web interfaces.

2 https://google.github.io/physical-web/



IV

DireWolf Space

Synchronized Data Model

Switch Logic

HTTP Client

HTTP Server

REST API

HTML5 
Element

End User 
Devices

Thermometer 

Logic

Weather Station Logic

Barometer

Logic

HTTP Client

HTTP Client
Light

Weather 
Station

HTTP Server

REST API

HTML5 
Element

DireWolf Space

Synchronized 
Data Model

Switch Logic

HTTP Client

HTTP

WebRTC

JavaScript

WoT Cloud

Fig. 1. Overview of the DireWolf for the Web of Things System

3 User Interfaces for the Web of Things

In our conceptual framework, we combine ideas of End User Development, the
Web of Things and the Physical Web and allow devices to broadcast their own
user interface and access logic. We are able to read in the user interfaces and
display them in a common Web platform. To this end, we extend DireWolf, a
framework for multi-device widget-based Web applications [17]. DireWolf already
gives us the conceptual notion of sharing Web interfaces by synchronizing Web
applications across multiple devices.

Figure 1 shows a system overview of the extended DireWolf framework in a
smart ambient setting with intelligent lighting and a weather station connected
to the Internet. The approach unites various flavors of end user devices with local
and cloud-based solutions accessing the Web of Things. Smart things advertise
an URL either by QR codes or Bluetooth Low Energy beacon signals. Either
way, the URL points to a user interface element resource downloadable through
HTTP. The actual interface to access device attributes and functionality, like
temperature values and switching lights, is conceptually decoupled. It can either
be served directly through the device or be hosted in the cloud, like in the case
of the weather station that regularly pushes its data to a distant server. Beyond
REST based interfaces on the device itself or through the cloud, in our approach,
the devices can also be accessed over other communication channels available
in Web browsers like Web Bluetooth and MQTT. Following the fundamental
principles of XML and the Document Object Model in particular, imported
elements are put in a tree, i.e. they may reference other components themselves to
build up complex user interfaces. Beyond, the user interface elements are shared
across instances. Due to Hypertext characteristics, particular elements can be
bookmarked and linked either separately or as their combined representation,
encapsulated within a structural or layout element.

Once coupled with the DireWolf platform, the user interface elements are
aligned in flexible grids according to the concepts of Responsive Web Design [18].
All imported elements get access to a shared data model for cross-device syn-
chronization of their state. An optional master flag on the device the element



V

Smartphone Tablet
Shared Data 

Model
Smart 
Switch

Requesting UI

Retrieving UI
Saving URL

Notification

Switching on

Confirmation
switch=on

Notification

switch=off
Notification

Switching off

Confirmation

Retrieving UI

Requesting UI

Scanning QR Code

Fig. 2. Sequence Diagram of the Synchronization

was imported on makes it the primary responsible entity to access the device and
saving parameters in the shared model. This way, we avoid redundant requests
to constrained devices. Rather, sensor and other values are only accessed once
and distributed over the synchronization channel. In the case of the master dis-
connecting, the functionality is migrated to a new device. A master component
could also be responsible for providing cached or interpolated data when certain
WoT devices may be temporarily disconnected.

Figure 2 shows a sequence diagram of the overall communication. First, a
Smart Switch is added to the system that could control an ambient light for
instance. Then, the switch is turned on. As can be seen, only one of the DireWolf
instances is directly communicating with the physical device, the rest is operating
on the shared, synchronized data model. Changes in the data model trigger
notifications that in turn may cause requests to the physical device to perform
the action. The other way round, this applies to events as well.

4 Implementation of the Platform for the Web of Things

We implemented a prototype using the Web Components group of W3C rec-
ommendations that have brought much-needed standardization in the area of
componentized frontends for the Web [19]. WoT components are imported us-
ing HTML Imports that define Custom Elements. These in turn define their UI
elements in HTML Templates within their Shadow DOM. To provide backwards-
compatibility with browsers not yet supporting the standards, a polyfill library
is imported, that transparently handles all functionality that is not present on
the current platform; if the methods are available natively, they are used in-
stead. Parts of our implementation use the Polymer3 library from Google that
adds syntactic sugar on top of the Web Components JavaScript API calls. For

3 https://www.polymer-project.org/1.0/



VI

example, a complete set of responsive, well-designed user elements are available
through Polymer.

DireWolf provides application spaces for separating different applications. In
our concept, all elements within the same space share a common data model.
This is realized with a custom HTML5 element called direwolf-space that can
be declaratively controlled with attributes. For instance, the space attribute
defines the space’s name. The direwolf-space element can be embedded in
arbitrary HTML pages; we have already successfully deployed it in WordPress
and ROLE SDK instances.

Elements wishing to use the shared data model need to implement the ab-
stract class DireWolf-Element-Behavior. A synced-properties attribute can
then be used to list all parameters of the element that should be synchronized
across DireWolf instances. The synchronization layer is implemented using Yjs,
our library for synchronizing data structures in a peer-to-peer way [20].

Fig. 3. Screenshot of the Scanning Process

Figure 3 shows a screenshot of the Web application taken on a Laptop. It
shows the space called ”myspace”. A toolbar button on the right opens a dialog
that embeds a QR code scanner application. The scanner itself is developed
natively with Web technologies. Upon scanning of a code, the interface of the
WoT device is added to the space.

5 Conclusion and Future Work

In this article, we have introduced our conceptual extension of the DireWolf
framework towards integrating heterogeneous Web of Things devices. The plat-
form is based on state-of-the-art Web Components, thus the application spaces
are embeddable in any kind of (responsive) HTML5 websites. User interface ele-
ments can be aligned in tree structures for delivering more complex applications.

To preliminarily validate the conceptual findings and use the results of the
implementation in a real-world setting, we have set up a technical evaluation
testbed using a variety of mobile devices and a number of commercially avail-
able and custom-made smart things connected to the Internet. Our scenario is
based on Figure 1 with a GSM-One WiFi smart socket and a Netatmo weather
station. In both cases, designing the UI logic with Web Components could be



VII

performed in little time based on the broad documentation of Polymer UI com-
ponents. The challenge was accounting for the vendor-specific API endpoints
in the application logic: While for standards like XMPP and MQTT develop-
ers profit of a wide variety of Open Source libraries, both our test appliances
required getting familiar with their proprietary REST APIs. Recent initiatives
by global players such as Google and Mozilla are currently embedding further
communication channels into the Web, including Web Bluetooth and mDNS;
these technologies are a valuable add-on for DireWolf.

Because of the late-breaking style of this article, a thorough evaluation of our
concept still has to be carried out. We are especially interested in the scalabil-
ity of our concept, i.e. how many end users can use how many components for
which number of WoT devices. Besides, we plan to analyze aspects of usability,
accessibility and security. Technical challenges remain in JavaScript dependency
management; in the current prototype, all imported elements need to reference
the same version of 3rd party libraries to avoid undesired behavior. Module load-
ers that are currently being standardized in ECMAScript 6, the next generation
of JavaScript, may solve this problem in the future. Finally, we envision head-
less DireWolf clients conceptually acting as microservices for performing the
actual connection to WoT devices, while broadcasting results over the shared
data model. They could as well serve as gate keepers for verifying access rights
of users in collaboration with authentication and authorization providers. We
are confident, that our framework can help build future Web infrastructures for
a heterogeneous device landscape.

Acknowledgements. The work has received funding from the European Commis-
sion’s FP7 IP Learning Layers under grant agreement no 318209.

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
Berlin Heidelberg, Berlin, Heidelberg (2014)

2. Balasubramaniam, S., Lewis, G.A., Simanta, S., Smith, D.B.: Situated Software:
Concepts, Motivation, Technology, and the Future. IEEE Software 25(6) (2008)
50–55

3. Lieberman, H., Paternò, F., Wulf, V.: End User Development. Volume v. 9 of
Human-Computer Interaction Series. Springer, Dordrecht (2006)

4. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Commu-
nications of the ACM 47(9) (2004) 53

5. Wulf, V., Jarke, M.: The Economics of End-User Development. Communications
of the ACM 47(9) (2004) 41–42

6. Sutcliffe, A.: Evaluating the Costs and Benefits of End-User Development. ACM
SIGSOFT Software Engineering Notes 30(4) (2005) 1

7. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion, New York (2006)

8. Ogrinz, M.: Mashup Patterns: Designs and Examples for the Modern Enterprise.
Addison-Wesley, Upper Saddle River, NJ (2009)



VIII

9. Guinard, D., Trifa, V.: Towards the Web of Things - Web Mashups for Embedded
Devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Composi-
tion on the Web (MEM 2009), in Proceedings of the 18th International Conference
on World Wide Web, New York, NY, USA, ACM (2009)

10. Guinard, D., Trifa, V., Mattern, F., Wilde, E.: From the Internet of Things to
the Web of Things: Resource Oriented Architecture and Best Practices. In Uckel-
mann, D., Harrison, M., Michahelles, F., eds.: Architecting the Internet of Things.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 97–129

11. Freitas, A.d., Nebeling, M., Chen, X.A., Yang, J., Ranithangam, A.S.K.K., Dey,
A.K.: Snap-To-It: A User-Inspired Platform for Opportunistic Device Interactions.
In: Proceedings of the 34th Annual ACM Conference on Human Factors in Com-
puting Systems (CHI’16) (to be published). (2016)

12. O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor, V.
Chepegin, J. A. Fornas, S.Wilson, C. Kögler, H. Chang: End-User-Oriented Telco
Mashups: The OMELETTE Approach. In: Proceedings of the 21st International
Conference Companion on World Wide Web (WWW’12 Companion). (2012) 235

13. Govaerts, S., Verbert, K., Dahrendorf, D., Ullrich, C., Schmidt, M., Werkle, M.,
Chatterjee, A., Nussbaumer, A., Renzel, D., Scheffel, M., Friedrich, M., Santos,
J.L., Duval, E., Law, E.L.C.: Towards Responsive Open Learning Environments:
The ROLE Interoperability Framework. In Kloos, C.D., et al., eds.: Towards Ubiq-
uitous Learning. Volume 6964 of Lecture Notes in Computer Science., Berlin, Hei-
delberg, Springer Berlin Heidelberg (2011) 125–138

14. Häkkilä, J., Korpipää, P., Ronkainen, S., Tuomela, U.: Interaction and End-User
Programming with a Context-Aware Mobile Application. In Hutchison, D., et al.,
eds.: Human-Computer Interaction - INTERACT 2005. Volume 3585 of Lecture
Notes in Computer Science., Berlin, Heidelberg, Springer Berlin Heidelberg (2005)
927–937

15. Cappiello, C., Matera, M., Picozzi, M.: End-User Development of Mobile Mashups.
In Hutchison, D., et al., eds.: Design, User Experience, and Usability. Web, Mobile,
and Product Design. Volume 8015 of Lecture Notes in Computer Science., Berlin,
Heidelberg, Springer Berlin Heidelberg (2013) 641–650

16. Chaisatien, P., Prutsachainimmit, K., Tokuda, T.: Mobile Mashup Generator Sys-
tem for Cooperative Applications of Different Mobile Devices. In: Web Engineering,
Springer (2011) 182–197

17. Kovachev, D., Renzel, D., Nicolaescu, P., Koren, I., Klamma, R.: DireWolf: A
Framework for Widget-based Distributed User Interfaces. Journal of Web Engi-
neering 13(3&4) (2014) 203–222

18. Marcotte, E.: Responsive Web Design. A Book Apart, New York (2011)
19. Krug, M., Gaedke, M.: SmartComposition: Enhanced Web Components for a

Better Future of Web Development. In: Proceedings of the 24th International
Conference on World Wide Web. 207–210

20. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: A Framework for Near
Real-Time P2P Shared Editing on Arbitrary Data Types. In: Proceedings of the
15th International Conference on Web Engineering (ICWE15). (2015)




