
Journal of Web Engineering, Vol. 13, No. 3&4 (2014) 203–222
c© Rinton Press

DIREWOLF: A FRAMEWORK FOR

WIDGET-BASED DISTRIBUTED USER INTERFACES

DEJAN KOVACHEV, DOMINIK RENZEL, PETRU NICOLAESCU,

ISTVÁN KOREN and RALF KLAMMA

Advanced Community Information Systems (ACIS) Group, RWTH Aachen University

Ahornstr. 55, Aachen, 52056, Germany

{kovachev|renzel|nicolaescu|koren|klamma}@dbis.rwth-aachen.de

Web applications have overcome traditional desktop applications especially in collab-
orative settings. However, the bulk of Web applications still follow the “single user

on a single device” computing model. Therefore, we created the DireWolf framework

for rich Web applications with distributed user interfaces (DUIs) over a federation of
heterogeneous commodity devices supporting modern Web browsers such as laptops,

smart phones and tablet computers. The DUIs are based on widget technology coupled

with cross-platform inter-widget communication (IWC) and seamless session mobility.
Inter-widget communication technologies connect the widgets and enable real-time col-

laborative applications as well as runtime migration in our framework. We show that the
DireWolf framework facilitates the use case of DUI-enabled semantic video annotation.

For a single user it provides more flexible control over different parts of an application

by enabling the simultaneous use of smart phones, tablets and computers. We con-
ducted a technical evaluation and two user studies to validate the DireWolf approach.

The work presented opens the way for creating distributed Web applications which can

access device specific functionalities such as multi-touch, text input, etc. in a federated
and usable manner. In this paper, we also sketch our ongoing work to integrate the

WebRTC API into DireWolf, where we see opportunities for potential adoption of DUI

Web applications by the majority of Web users.

Keywords: distributed user interface; Web widget; inter-widget communication; XMPP;

WebRTC

1 Introduction

People increasingly interact with a collection of heterogeneous computing devices attached

to their daily lives. However, most Web applications fail to combine devices’ features into

a cohesive symbiotic way to convey a single user task in a collaborative fashion. One of

the reasons behind this failure is the lack of tools and methodologies required to develop

applications spreading user interfaces across multiple devices available to a particular user or

group of users. Personal computing is no longer confined to a single device. PCs together

with commodity smartphones, tablets, eBook readers, gaming consoles and interactive TVs

can be federated over the Internet to create collaborative multi-device interactive systems

which can benefit from the diverse device capabilities. An individual can interact in different

ways with such symbiotic computing environments consisting of personal devices.

As a consequence, monolithic single-device user interfaces (UI) devolve to Distributed User

Interfaces (DUI). DUIs separate, migrate and merge seamlessly between devices. Additionally,

203

This is the authors' preprint version of the paper appearing in Journal of Web Engineering, Vol. 13, No. 3&4, 2014.© 2014 Rinton Press

204 DireWolf Framework for Widget-based Distributed User Interfaces

they can adapt to different platforms [1] and account for changes in device availability to

achieve a continuous application experience [2].

Developing distributed user interfaces is challenging [3]. From the user perspective, two

challenges are salient. First, users should be supported to adapt the distribution to their

needs. Second, users should experience seamless UI migration. Migrated UI components

preserve state and remain consistent with the whole application context. Concerning the use

of multiple devices, current Web applications can be well rendered on different platforms.

However, most of them ignore the possibility of using multiple personal computing devices.

Cooperation between such devices related to distributed interfaces is scarce and mostly limited

to device-specific static interface separation.

Tablets:
video players with

multi-touch interaction
Laptops and PCs:

text editing

Si
n

gl
e-

d
ev

ic
e

U
I

M
u

lt
i-

d
ev

ic
e

 d
is

tr
ib

u
te

d
 U

I

Smartphones:
on-site video capture,
geo-tagging on maps
and video annotation

Fig. 1. An example of distribution of user interface components (widgets) to diverse (mobile)
computing devices

To address these challenges, we present DireWolf, a framework for distributed Web appli-

cations based on widgets. Similar to the general requirements of such frameworks given in

[4], with DireWolf we also strive to increase the number of input modalities and extend the

display area of a personal computing environment by using a federation of devices (desktops,

laptops, smartphones, tablets). However, we chose to limit the support to Web based ap-

plications which are installation-free and cross-platform. We have chosen to work with Web

widgets because they represent interface components with limited, but clear-cut functional-

ity, dedicated to smaller tasks. Widgets can be shared, reused, mashed up and personalized

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 205

between applications. By splitting the interface into separate widgets and enabling them to

exchange information, customizable Web applications can be developed. Whereas previous

work [5, 6] on widget applications and mashups considers single-end devices only, we exam-

ine the concept of widget-based Web applications combined with device awareness, session

mobility and cross-device cooperation.

To illustrate the concept, we shortly describe a semantic video annotation application (cf.

Figure 1). This application was transformed from a typical Web application into a widget-

based one, thus validating the feasibility of our approach. A semantic video annotation

application is an ideal candidate for extended UI interactions: users watch videos, annotate

them at certain time points or for specific time intervals and navigate through a video using

the annotations. Various types of available semantic annotations (agent, time, concept, object

type) can be added using text input and interacting with a video player. Place annotations

can be pinpointed on a map. However, e.g. full screen mode of the video player hides all

other UI controls on one device. In an annotation scenario, distributing the UI enhances user

experience. Users can play the video in full screen on one device and can use additional devices

to annotate it or to browse through the video. Moreover, they can use device-specific features

for each of the UI elements, e.g. multi-touch on a smartphone for interacting with a digital

map. Preserving UI state across devices is also required for such a scenario, e.g. resume at

current position instead of restart after migration of a video player, continue annotating, etc.

Our paper brings forward the following contributions:

• a framework for easy browser-based distribution of Web widgets between multiple

devices,

• support for extended multi-modal real-time interactions on a federation of personal

computing devices,

• provisioning of continuous state-preserving widget migration,

• a performance evaluation of widget migration, and usability studies of widget-based

DUI Web applications.

DireWolf helps managing a set of devices and handles communication and control of dis-

tributed parts of the Web application. The conceptual and implementation details of the

DireWolf framework, together with the possibility of integration into existing widget plat-

forms are detailed in the next sections.

The rest of the paper is structured as follows. In Section 2, we present relevant literature

related to our approach. In Section 3 we introduce current widget-based Web applications

as a starting point for our DUI framework. Sections 4 presents the DireWolf framework in

detail with a focus on the framework concept and continuous widget migration (i.e. preserving

the widget state before and after the migration). Section 5 provides implementation details.

Results from the technical evaluation and user studies are discussed in Section 6. Finally,

Section 8 concludes this work and provides an outlook to future research.

2 Related Work

Our DUI approach is related to work in two research domains, namely mechanisms for

distributing and migrating Web UI and frameworks for using multiple personal computing

devices to perform a single user task.

206 DireWolf Framework for Widget-based Distributed User Interfaces

Distributing Web UIs means ungrouping Web document elements and presenting them

separately without compromising application functionality. The granularity of UI splitting

can range from arbitrary partitions to pre-defined UI blocks. Ghiani et al. [7] provide a

mechanism to select a part of a Web page which can be migrated and shown on a mobile device.

However, this approach is only feasible for the adaptation of Web pages and does not support

presentation of different UI components on multiple devices at the same time. Model-based

approaches [2, 8, 9] define different abstract UI configurations at design time and generate

concrete UI presentations at runtime. These works demonstrate dynamic distribution of Web

interfaces among heterogeneous platforms. Learning to use the schema for an application

induces additional development effort. Moreover, if a new application joins the system, new

UI schema files must be written, and the root UI schema must be modified. In contrast, we

consider Web applications composed of widgets using open Web standards.

DUI systems can be further discriminated according to the architectural approach. Cen-

tralized DUI systems manage UI distributions using one server which is in charge of all UI

distribution activities, whereas client devices only display distributed UIs or meta-UIs. A

typical centralized DUI system is proposed by Vanderhulst et al. [2]. Proxywork [10] is an-

other example of a centralized approach which uses a proxy between the user devices and the

actual Web application. The proxy modifies the application and places UI components on

different devices. Thus, this approach avoids schema dependability. However, it requires an

intermediate server to broker between end clients and the Web services. This works well with

simple static Web pages, but may have difficulties with highly dynamic Web applications. In

contrast, DireWolf also uses a server, but only for messaging between the UI components.

Alternatively, the distribution of UIs can be done in a peer-to-peer (P2P) manner [11].

All peers in the scope of the application are equal and they manage UIs without any global

knowledge. However, considering the UI components created all over the network, the stability

of the application cannot be guaranteed when clients with master proxies are disconnected.

Moreover, all devices must install framework binaries before they can create DUI components

or import remote components directly from other devices. Nevertheless, the emerging Web

Real-Time Communication (WebRTC) [12, 13] API standard for direct browser-to-browser

communication in modern browsers will help mitigate this issue.

Dynamic DUIs should support runtime component migration. Necessary steps for a suc-

cessful migration are presented in the Roam project [14]. Roam preserves the application

execution state information such as heap, stack, network sockets, etc. at the start of the

migration and restores them after migration. For continuous Web browsing, Alapetite et

al. [15] migrate Web sessions across mobile devices using 2D-barcodes captured by cameras.

A dedicated State Mapper is also developed in [16] for state recovery during UI migration

between mobile phones and digital TVs. Inspired by these approaches, our framework realizes

complete continuous migration tailored to Web widgets.

Multi-device collaboration means that multiple devices can join the same application scope

and that these devices can complete tasks together. Early approaches have focused on sup-

porting desktop applications with devices such as PDAs and handheld computers over wired

or wireless connections. Pebbles [17] extends computing and I/O functionalities by involving

heterogeneous devices. The extended UIs are native applications specially tailored for each

computing platform and each functionality. Thus, multi-device UI are tightly coupled with

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 207

the computing hardware. Melchior et al. [11] present a P2P framework that helps deploy

distributed graphical user interfaces. All devices must install the framework before they can

create components or import remote components directly from other devices. Many projects

consider one-to-one mappings between users and devices, which is more applicable for collab-

orative scenarios. MarcoFlow [18, 6] uses modular UI to represent the relevant controls and

information to the user, but it focuses on the orchestration of business processes involving

multiple users with different data views. Pierce and Nichols [19] use the idea of ownership

to address personal computing devices and to enable seamless user experience over multiple

devices. Their prototype simplifies the development of applications that are aware of a user’s

devices but it does not support UI migration. The DireWolf framework supports any device

with an available modern Web browser. There is no need for pre-installed components or

configurations. In the following, we first introduce Widget-based Web applications to clarify

the context in which DireWolf was developed.

3 Widget-based Web Applications

Important prerequisites for distributing individual elements of complete Web applications are

a clear separation into conceptual and functional units, a context for managing separation,

and cross-device communication between these units. In this section we briefly introduce

widget-based Web applications and discuss why they fulfill the above prerequisites and thus

served as foundation for the DireWolf framework.

The basic building block is a widget. Conceptually, a widget is a self-contained mini-

application with limited, however clean-cut functionality. Widgets are usually designed to

accomplish small stand-alone tasks, which may recur in multiple different applications. Fur-

thermore, widgets are usually designed with limited display size, such that multiple widgets

fit on one desktop browser screen or single widgets fit on limited-size mobile device screens.

By design, widgets are reusable for multiple purposes in different applications. As such, wid-

gets strongly resemble mobile applications. Technically speaking, existing widget standard

specifications define widgets as packaged Web applications including means of configuration

and access to dedicated widget application programming interfaces. Principally, any existing

Web application can be “widgetized”. However, the form factor of limited display size often

requires an adapted design. In practice, widgets usually serve as minimal frontends to more

complex Web services. For our work, widgets perfectly serve as the functional units to be

migrated across devices.

Complex applications can be achieved by orchestrating multiple widgets in a dashboard

fashion in widget containers. Research towards the effective integration of widgets to complete

collaborative Web applications resulted in additional layers on top of widget containers that

make use of the DireWolf framework, i.e. widget spaces [5] and inter-widget communication.

First, combinations of multiple widgets require a working context and technical support

to manage such contexts. In our work, we employ the concept of a widget space as working

context. A widget space is a collaboration context, in which multiple users collaboratively

manage and operate sets of widgets and additional resources to create custom applications

for different purposes. For this work, we extended widget spaces by the additional notion of

multiple devices per user. Second, the integration of multiple widgets to complete applications

requires an interoperable communication mechanism between widgets, referred to as Inter-

208 DireWolf Framework for Widget-based Distributed User Interfaces

Fig. 2. Widget-based Web applications: (left) traditional non-distributed approach and (right)

DUI approach

widget Communication. With such a usually publish-subscribe-based mechanism, messages

can be broadcast from any widget and possibly dispatched by other widgets, thus allowing the

combination of multiple widgets to complete integrated applications. Our approach thereby

clearly falls into the category of choreographed UI mashups [20]. Most existing approaches

only support local IWC, i.e. communication between widgets within one single browser in-

stance. An additional feature of our complete IWC approach includes remote communication

between widgets across different browser instances and users [21]. For this work, we use both

forms of IWC as carrier for message exchange between different parts of our DUI framework

within and across devices.

The left part of Figure 2 depicts the initial setting from which this work departed. In the

following section we elaborate on the extensions contributed by our DUI framework in detail,

thus leading to the situation in right part of Figure 2.

4 DireWolf Framework

Based on the state-of-the-art in widget-based Web applications discussed in the previous sec-

tion, we now introduce the DireWolf framework. First, we discuss the particular requirements

for such a framework, which are not yet covered by existing widget-based Web application

frameworks.

4.1 Requirements Analysis

As a first step, we performed a requirements analysis with the goal of improving deficiencies

found in existing work on DUIs (cf. Section 2), thereby taking into account the current state-

of-the-art in widget-based Web applications (cf. Section 3). Figure 3 provides a high-level

overview of the main identified requirements to managing distribution and migration in a DUI

framework, grouped into four interrelated categories: device information, device ownership,

application state and widget handling.

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 209

Fig. 3. Main requirements to managing distribution and migration in a dynamic widget-based

DUI framework

A DUI framework must enable the management of general and context-specific device

information. General information includes information on device connectivity and profile.

A device profile captures information on device type (e.g. smartphone, tablet, laptop) and

capabilities (e.g. operating system, display size, in/output modalities, browser type) required

for device recognition and adaptation purposes. Device connectivity describes the current

availability of the device for collaboration and should be updated in real time. Context-

specific information includes device location, i.e. in which context the device is currently

active, and displayed widgets, i.e. which widgets are displayed on the device in the current

context.

Furthermore, a DUI framework must dynamically capture and manage device owner-

ship. With the ever dropping prices of mobile devices, a person’s device portfolio is likely to

change often. Each user should thus be enabled to dynamically manage a personal device list.

Thereby, each device instance describes a virtual device which can be bound to a real device.

The introduction of virtual devices provides additional flexibility, i.e. multiple configurations

for a single device and switching between real devices.

Obviously, a DUI framework must support distribution and migration of widgets across

devices within a given context. In its simplest form, migration is a synchronized procedure

controlled by the framework, where a widget is first removed from a source device and then

created on a target device. However, constellations of widget distributions must be persis-

tent. Thus, a DUI framework must be enabled to manage, store and synchronize application

state within a given working context. For simple migration, application state must include

information on the context and on widget locations, i.e. which widgets are currently residing

on which device for which person. However, simple migration does not guarantee a seam-

less working experience. Although general widget configuration parameters are persistently

managed by current standard widget engines, a widget will lose its internal state during the

migration procedure. For some widgets this is not an issue (e.g. a clock widget), for some it

is. Thus, a DUI framework must support the management, storage and synchronization of

internal widget state. With such measures, a DUI framework is enabled to support continuous

migration, i.e. a widget stores a snapshot of its internal state before removal from a source

210 DireWolf Framework for Widget-based Distributed User Interfaces

device and restores internal state after its creation on the target device.

4.2 Framework Design

The DUI framework is involved in every layer of the widget-based Web application. Com-

ponents should be created for widgets, client browsers, backend services as well as the data

storage. Framework client components are included in the widget application document ren-

dered in the Web browser. They manage communication and synchronization between widgets

on one device, but also between widgets on other devices. The framework server components

extend the functionality of common widget spaces with services for data persistence, user

device profiles, and shared application state.

The DUI framework provides management services for device profiles and widgets when

the user owns multiple devices. The inner workings of a widget are out of concern of the DUI

framework. A requirement is that a mobile device needs to host some modern Web browser

such as those found on most commodity smartphones and tablets. The use cases focus on

creating, getter/setter and operating on resources (widgets).

Figure 4 depicts the key architecture features of the DireWolf framework. As mentioned

in Sec. 3, the DUI framework requires a real-time communication mechanism to “glue” all

distributed UI components into one cohesive application. The Message Router server compo-

nent provides bi-directional asynchronous message exchange between the client components

and the server.

DUI Client is a widget helper component to be included as a JavaScript library in the

widget namespace. DUI Client usage in widgets is optional (e.g. legacy widgets). These

widgets can still be distributed and migrated. However, the DUI Client enhances DUI-related

features for the widget and provides an API to interpret and create framework messages and

events. DUI Client has additional methods to store widget state as part of application state

at the server-side service component. It sends requests, and server components send back

responses as well as broadcast notifications to all other Web clients if necessary.

DUI Manager is the central DUI component on the client browser. All features resp. func-

tionalities are directly or indirectly related to it. DUI Manager connects to other components

of the framework in three ways: request-response communication, local and remote IWC.

For example, DUI Manager uses requests-response communication to retrieve user profile

and space information from server-side services. Local IWC is used for communicating with

widgets running in the same browser context. Remote IWC provides the message-exchange

mechanism for widgets and DUI Managers located at different devices.

At start, the DUI manager fetches the user profile which contains the device list and the

device profiles. The connectivity of a user’s devices is monitored constantly after the DUI

manager is activated. The user can choose one virtual device per real device. If a device is not

listed, the framework attempts to recognize it by using cookies, HTTP User-Agent headers

and user input.

DUI Responder is the server-side central DUI component. All DUI relevant requests are

redirected to this component. The main tasks of DUI Responder are to maintain DUI-relevant

data and keep all DUI managers on client browsers synchronized.

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 211

Fig. 4. Abstract architecture of the DUI framework

4.3 Widget Migration

By using a widget approach, the dynamic transition of UI components from desktop to mobile

devices is simpler. Widgets resemble mobile device screen sizes by design. Rendering a widget

on smartphone or a tablet only requires adaptation of the widget containing element. The

framework provides primitives for continuous and non-continuous migration. The former

preserves the widget state in the framework runtime, whereas the latter recreates the widget

on the new location.

Considering failover, since mobile devices can go offline unexpectedly, widgets can become

inactive. If failover happens during a continuous migration, the last known state is restored.

The choice of migration type is left to the widget (application) developer to suit his needs.

Moreover, the developer can design state persistence on at regular time intervals to ensure

higher reliability. The DUI Responder considers a widget to be inactive if it cannot find an

active device displaying the widget. Different procedures are provided to inactive widgets and

active widgets. Figure 5 illustrates the case of continuous migration. When a DUI Manager

initiates a widget migration on any device, the DUI Responder looks for the widgets on all

devices of the requesting user. If the widget is found to be inactive, the DUI Responder

switches the widget location from no device or an inactive device to the migration target

device. Then, it sends out a message to perform the migration procedure on all DUI Managers.

During continuous migrations, widget state is stored right before migration. Thus, we

ensure that widget state is preserved in cases of failure during continuous migration. The

widget can retrieve state as a snapshot for continuing the task. DUI-supported widgets can

be either inactive or active. DUI Manager tries to restore the state for inactive widgets and

guarantees the continuity for active widgets. For inactive widgets, the steps are the same as

the non-continuous migration of inactive widgets, except that DUI Manager sends the last

stored state of the widget.

For continuous migration of active widgets, DUI Manager asks the widget’s DUI Client to

collect the widget state for the incoming migration. On receiving the command for migration,

DUI Manager on the source device informs the DUI Client to prepare the widget removal.

DUI Manager on the target device extracts information from the command. DUI Client is

then guided by DUI Manager to run several steps to finish the migration.

212 DireWolf Framework for Widget-based Distributed User Interfaces

widget
active

initiate migration

DUI
responder

DUI manager
the target

init migration

change
widget

location

DUI manager
the source

init migration

change widget
location

perform
migration

perform
migration

DUI client DUI client

prepare
migration

states

is DUI widget

collect
state

set widget state

DUI migration
display widget

update meta-UI

connect to DUI

record

widget state

app. state

finish migration

finish migration

prepare removal

on removal

done

remove
widget
update
meta-UI

Initiate migration

Save widget state

Update widget state

Create/remove
widget

Change widget
location

Fig. 5. Sequence diagram for continuous migration of active widgets

5 Implementation

The implementation of the DireWolf framework builds upon the Open Source Java-based

ROLE SDKa, including a platform for hosting and managing Widget-based Web applications

as described in Section 3. As basic widget engine, the ROLE platform employs the OpenSo-

cial [22] container Apache Shindigb. On top of Shindig, the platform implements a set of

RESTful services for user management and personal and collaborative widget space manage-

ment. It should be noted that the space concept is currently standardized in the OpenSocial

3.0 specification. Consequently, it will be implemented in Shindig and will possibly become

part of other Shindig-based widget platforms such as Apache Ravec. Furthermore, the platform

supports secure authentication and authorization by employing OpenID and OAuth. A real-

time service realizes the integration with an XMPP [23] server providing support for multi-user

chat conversations in widget spaces and publish-subscribe support for remote IWC. Associ-

ations between modules are realized by injection. For our work we strongly employ IWC,

using HTML5 Web Messaging [24] for local IWC. An additional feature of our complete IWC

approach includes remote communication between widgets across different browser instances

and users [21] using the XMPP protocol [23] and its publish-subscribe extension [25]. We

use both forms of IWC as a carrier for message exchange between different parts of our DUI

framework within and across devices.

ahttp://sourceforge.net/projects/role-project/
bhttp://shindig.apache.org/
chttp://rave.apache.org

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 213

On client side, the platform provides an AJAX browser frontend based on HTML, CSS,

JavaScript, and jQueryd. For client-side real-time support the ROLE platform employs stro-

phe.jse, a robust XMPP library for JavaScript including support for XMPP over WebSocket [26]

in modern browsers. Widget spaces are used as context for IWC. In collaboration with user

and space management services, the platform real-time service manages one dedicated publish-

subscribe channel per space for IWC including whitelist-based access control. On client side,

every widget space is instrumented with a DUI Manager including an IWC proxy, which

routes outgoing IWC messages to the affiliated XMPP server via the strophe-based XMPP

connection and incoming messages to all widgets in the space via HTML5 Web Messaging [24].

Widgets can be equipped with IWC support by simply importing a small IWC client library

and implementing functions for publishing and processing IWC messages. The DUI Client

library extends the plain IWC library by a set of functions related to storage and retrieval of

internal widget state.

Given that many technical prerequisites for DireWolf were already fulfilled by the ROLE

platform, we chose an integration approach. In its current version, DireWolf is an exten-

sion of the existing ROLE platform and its components. The DUI Responder is realized as

an additional RESTful service for managing device migration-specific data such as personal

device lists, device profiles, and user and space-related application states, including widget

state. Client side components such as DUI Manager and DUI Client communicate appli-

cation state and initiate widget migration by simple HTTP requests to the DUI Responder,

which in turn controls the synchronization process and initiates real-time synchronization nec-

essary for migration. All migration-related communication between individual components

(Message Router, DUI Manager, DUI Clients) is handled via ROLE IWC over a separate

publish-subscribe channel to avoid interference with regular developer-defined IWC messages.

For convenient control of widget distribution and device registration DireWolf provides a

set of user interface components as frontend to the DUI Manager. Figure 6 shows the main

component integrated into the side panel of a widget space’s view in the overall ROLE plat-

form user interface . The upper Device Manager button bar provides shortcuts to a device

manager console for personal device management including detailed configuration and debug-

ging options. The Current Device resp. Remote Devices sections list all widgets displayed

on the current device resp. remote devices along with device connectivity. In the example in

Figure 6, the current widget space contains six widgets, distributed to four devices with dif-

ferent profiles (PC, iPad, iPhone and Mac). Only two devices are currently active, indicated

by the green circle next to the device name. Thus, only five widgets are currently visible.

One widget was previously migrated to the user’s iPhone, which is currently disconnected,

indicated by a grey marker. By using drag and drop, widgets can be (re-)distributed between

active devices. The user can simply drag a widget handler in the sidebar panel and drop on

another device placeholder. The migration of the widget is then automatically triggered. At

runtime, the user can create arbitrary distribution of widgets by migrating them to available

devices.

dhttp://jquery.com/
ehttp://strophe.im/strophejs

214 DireWolf Framework for Widget-based Distributed User Interfaces

Fig. 6. DUI manager user interface in a widget space sidebar panel

5.1 WebRTC for Peer-to-Peer-Based Message Exchange

We are currently investigating to use the recent Web Real-Time Communication (Web-

RTC) [12, 13] draft to allow active devices to establish a peer-to-peer session to connect

with each other. WebRTC allows direct data exchange between two browser instances with-

out an intermediary server and across firewalls. Although current use cases from the draft

are still focused on establishing media channels for exchanging audio and video streams, it

includes the DataChannel interface for sending data bytes on the underlying UDP session,

while preserving the reliability of TCP. In the case of DireWolf, XMPP-based remote IWC

can be substituted by DataChannel links to bridge the devices of a user.

Additionally, we envision to offload centralized message routing logic from the server to

the endpoints. In comparison to our current architecture (cf. Figure 4) the Message Router is

now included on client side. To avoid a fully connected peer-to-peer mesh between the devices,

one dedicated Message Relay is introduced in a single browser instance. The Message Relay is

chosen by the system based on the connected device profiles. Hereby, a desktop system with

stable network connection takes priority over smartphones with scarce battery resources. The

Message Relay establishes and maintains WebRTC connections to other devices for relaying

control messages from the server-side DUI Responder. The server component is still needed

for managing widget application state.

To leverage the existing implementation and keep the use of peer-to-peer transparent to

the widgets, we maintain the XML based communication semantics of the lower layer and

only exchange the IWC’s low-level WebSocket connection to the XMPP server by WebRTC

DataChannel links. As WebRTC is relying on a signaling server to coordinate the connection

establishment for synchronously negotiating holes in the firewall, all devices still need to open

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 215

an XMPP connection to the DUI Responder upon start. The setup is then performed by the

Message Relay.

6 Evaluation

In this section, we present the setup of and results from our evaluation experiments which

investigated the applicability and usability of the distribution of widget-based user interfaces

in Web applications across different personal user devices. The evaluation of the DUI frame-

work is divided into two parts. First, we measured and analyzed the technical properties of

the widget migration operation. Second, we conducted an extensive user study for assessing

the usability of the DireWolf framework. The evaluation targeted to measure the impact of

the chosen technical framework upon the user experience, as well as to measure the user pref-

erences and satisfaction, keeping into account the contrast to traditional Web applications.

The methods used in the usability study try to discover the relation between different input

and output possibilities and different devices, as well as the usage of more devices for achiev-

ing a customized personal computing environment, where users can interact with complex

applications across multiple devices.

6.1 Widget Migration Performance

The migration component of the DireWolf framework was tested in a wireless local area

network; a common environment at home or in office where a user would use DUIs. The ping

latency of the network (6 ms) was considered negligible. Two setups were considered. The

first setup measured migration between two desktop machines (Mac OS, Windows 7), using

the Google Chrome browser (version 23). The second setup measured migration between

desktop machines and an iPad 1 with iOS 5.0, using the Safari Web browser.

Tests were conducted with widgets with simple functionality, measuring the time be-

tween two consecutive migrations across two devices. In order to avoid noise induced by

local time inconsistencies between devices, a reverse operation was automatically executed

after initial migration, and total round-trip time was recorded. For consistency reasons,

two kinds of migrations – simple migration (non-state-preserving) and continuous migration

(state-preserving) – were evaluated. Round trip times for 100 migrations (i.e. 50 rounds)

were measured.

Overall, our prototype achieved good performance results. For a blank widget, migration

lasted on average M = 0.36 s (SD = 0.05 s). Continuous migration requires two more steps

than a simple migration, i.e. storing widget state and rendering the widget with the Apache

Shindig rendering engine. Average time for continuous migration between the MacBook and

the desktop computer was M = 1.31 s (SD = 0.15 s). Due to the hardware differences,

MacBook and iPad combination yielded higher average migration time (M = 2.06 s, SD =

0.22 s).

By decomposing the time necessary for the migration and observing the interval needed

by each component of our framework, the results show that the initiation and the widget

rendering process take more time than the migration itself. The Shindig server’s JavaScript

library loading and the widget rendering steps require approximatively 69% of the time. In

contrast, the loading time needed by the DUI components is less than 25% of the overall time.

216 DireWolf Framework for Widget-based Distributed User Interfaces

6.2 Usability Analysis

In this section we report on two user studies in which the participants performed the tasks

distribution of user interfaces as well as widget transitions across various devices. The 25

participants were students or young researchers, studying in different domains at university

level. At first, participants were familiarized with the DireWolf framework, the concept of Web

widgets and spaces. Next, the multi-device distribution of user interfaces was demonstrated

on a simple widget-based Web application. Finally, the users were asked to perform tasks in

two subsequent experiments. The first one tested the user preferences for performing certain

activities using various widget types and devices. The second studied user performance and

experience with a complex Web application for video annotation with and without distribution

of the user interface. The user studies were arranged in individual sessions, after which each

user had to complete a usability questionnaire. The answers of the participants were collected

and compared. In addition, user interactions with the prototype were measured.

6.2.1 Widget Preferences

In this experiment we assumed that users can perform certain tasks like painting or typing

better or worse, depending on which type of device like touch-screen or desktop computer they

are working on. Three different widgets were involved in this experiment: a painting widget, a

text input widget and a map widget. The participants were asked to draw a given picture on a

canvas using both a touch-screen device and a desktop PC. The drawing performance in terms

of time needed to finish the drawing was measured. This type of widget was used because

the painting action requires accurate targeting and continuous movements on the screen. In

the text input widget case, the participants were asked to type a given text. The times

for finishing text input using on-screen vs. physical keyboards were recorded. This widget

assesses how well the on-screen mimicks the physical keyboard and how people react on these

two input modalities. In the map widget case, the participants were told a set of local sights

equally known by all persons. The time for locating these places on a map was recorded. This

task required a different set of interactions, depending on the device used. For the touch-

screen device, multi-touch gestures were involved like swiping and two-finger zoom. For the

mouse supported device, actions such as wheel zooming and dragging were involved. The

map widget assessed how people react on these two sets of interactive operations. Upon task

completion, participants stated that they preferred device/widget combinations for different

tasks.

Although users perform better on touch screens for drawing (mouse supported device:

M = 19.4 s, SD = 5.4 s; touch screen device: M = 15.1 s, SD = 4.2 s), 67% of users preferred

the mouse device. The typing task revealed that 96% of users preferred hardware keyboard,

indicating that the touch screen keyboard only provides an alternative, but not an optimal

solution (performance results with hardware keyboard: M = 48.7 s, SD = 6.7 s; touch screen

keyboard: M = 108.7 s, SD = 23.6 s). The map navigation task showed that although people

perform better on mouse supported devices (mouse supported device: M = 39 s, SD = 9.4

s; touch screen M = 48.9 s, SD = 10.3 s), more than half of users think that touch screens

exceed traditional desktop computer capabilities for this particular type of interaction.

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 217

The evaluation results of this study support the initial assumptions about device prefer-

ences for different tasks. This implies that there is a need of widget distribution and migration.

Overall, the preferences do not only depend on the performance, but also on the interaction

style and the familiarity of the users. For the paint widget most users declared that they

had never painted on touch screens before. The results obtained using the paint and the

map widgets exemplify the mutual influence between the familiarity and style of interaction.

Furthermore, the result of the text input is an example for the overwhelming influence of the

performance factor.

6.2.2 DUIs for Complex Web Applications

This part summarizes the second usability study, which evaluated the usefulness of the Dire-

Wolf framework for distributing the interface of a complex Web application. We validated the

benefits of widget-based DUIs across devices, while the user performs a complex UI interaction

task. This experiment used SeViAnno 2.0 (cf. Figure 1), our widget-based research prototype

with a customizable and distributable user interface for semantic video annotations [27]. The

application is composed of five widgets, fulfilling the following functionalities: video player,

adding annotations, listing of annotations for display and navigation, annotating places using

a map and listing all the available videos. A widget can migrate between devices without

losing its current state. Thus, after distributing the SeViAnno 2.0 widgets to multiple de-

vices, the widgets continue their operation while the whole application preserves its integrity

and functionality. For example, after migrating the video player widget it resumes playing

without any interruptions.

In our study, SeViAnno 2.0 used a desktop PC to display a full screen video player, an

iPad to enable video navigation using the list of existing annotations and an iPhone to display

the map widget for spatial annotations. Users were asked to watch a video clip and locate

the time point of a certain event. Using this setting, we demonstrated the usefulness of

distributed interfaces by showing that content can be found faster. Two ways in which a

user could locate the right time point in a given time frame were considered. One way was

to randomly browse through the video using the video seek bar. The second way was to

search information in the video annotations list, where content about persons, events, places,

objects, etc. was available. In the evaluation scenario, the first search method is used when

the user does not distribute the widget and watches the video clip in full screen mode. With

a full screen display, the second search method is available only if the widget is located on

another device.

Considering a single video, the first task was to locate the occurrence of a known person

in the video and the second task to locate the background voice that introduces a person in

the video. The time spent for each of the two search tasks is depicted in Figure 7a. The data

recorded is the time that the user spends on locating the right time point in the video.

After the experiments, users were free to rearrange the widget distribution and to perform

other tasks. One of the observations at this stage was that due to user preference on single

widgets and the multi-platform compatibility of the widget implementation, different users

can have different preferences on the distribution of the widget set (see Figure 7b).

The results show that users found the information faster with the help of the annotations

widget. Considering the deviation, the search was more reliable with the help of the list of

218 DireWolf Framework for Widget-based Distributed User Interfaces

54,9 196 22 24,9
0

50

100

150

200

250

300

Locate person Locate sound

ti
m

e
 o

f
ta

sk
 c

o
m

p
le

ti
o

n
 (

se
co

n
d

)

without distribution

with widget distribution

(a) Time for task completion with and without
distribution

0

2

4

6

8

10

12

14

16

18

20

desktop

mobile

tablet

(b) User preferences of widget distribution

Fig. 7. Results of the evaluation using SeViAnno 2.0

annotations. In the results, a high deviation implies that the task is done by chance. This

became more evident as the information was harder to locate. Under the condition that the

users watched the video in full screen mode, such results imply that the distribution among

multiple devices improves the usability of complex Web applications.

Figure 7b shows the preferences on how users distributed the SeViAnno widgets. As it can

be observed, the users preferred to place the interactive widgets on the tablet. Users chose

the desktop device for widgets involving text input, as observed in the previous experiments.

The mobile phone was less used by users, because of the small screen size. This also implies

that users do distribute the widgets based on their preferences.

Concerning the overall user experience, the results show that distributing user interfaces

brings a good improvement for the usability and that this is a helpful feature (average 4.1/5).

Users would consider DUIs in the future, depending on the type of application (average

3.44/5). The DUI was considered easy to use, with an intuitive migration and an easy device

management. The migration time was not considered fast, but users rated it as acceptable

(average 3.48/5). Finally, we have also gathered general user feedback, using a section at

the end of our questionnaire for general comments. For the implementation of the complex

application, users expected better widget optimization for mobile devices. Related to the DUI

framework, users expected a reduced amount of side panel elements (e.g. information about

widgets, users) when there are many widgets in the space. Furthermore, different interaction

capabilities for the widget migration have been mentioned, such as drag-and-drop of the widget

itself to the target device. We consider these comments for further prototype improvements.

Furthermore, regarding our user study, the context switch for widget distribution should also

be considered, as switching between devices is dependent on the type of devices and their

functions.

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 219

7 Limitations

For this work we restricted our focus to a single-user multi-device setup. In such a setting,

it might appear that security does not play a major role. The complete setup is running

on a local network. All devices must be registered to the framework explicitly. All XMPP

traffic managing the inter-widget communication between devices is secured, e.g. with TLS.

However, prior experience with widget-based approaches has shown that even local forms

of inter-widget communication can pose serious security risks. In general, widgets used in

DireWolf must be considered as third-party products. As such, their internals remain unknown

to most users. Part of such internals is the widget’s IWC interface, i.e. which messages it

emits and to which messages it reacts accordingly. In DireWolf, the user has no explicit

control and awareness of the data flows between widgets. Without such control, third party

widgets with intentionally or unintentionally malicious behaviour are not hindered to carry

out their routines. A typical example is a widget capable of receiving intents to use paid

services, e.g. sending an SMS [20]. Combined with another widget emitting such intents

without explicit consent, the user will be held liable for the costs incurred. The situation

would be even worsened with multiple users collaborating remotely. As countermeasures,

future versions of DireWolf should introduce explicit mechanisms for controlling and staying

aware of the particular communication between widgets, thus resembling a hybrid UI mashup

(cf. [20]). In a single-user setting, a user should be enabled to manage trust for an individual

widget in terms of allowing resp. forbidding its participation in inter-widget communication.

In a multi-user setting, a user should be enabled to additionally manage trust to agents and

- in case of trust violations - block communication with those agents. Although TLS is the

common standard technique for message encryption in XMPP, we would prefer end-to-end

encryption (e.g. OTR), as currently actively discussed in the XMPP community.

8 Conclusions and Future Work

In this paper, we aim to solve the lack of dynamic interactive environments based on Web

technologies which can take advantage of the various personal devices used by an individual.

We provide a framework that can facilitate user interactions on a federation of personal

computing devices by making use of distributed user interfaces. We follow a widget-based

approach to encapsulate UIs and application functionalities, which benefits Web developer

communities already familiar with this programming model. Apache Rave and Shindig are

examples of such open-source communities. Since widgets can be grouped, shared, reused

and personalized, our approach ensures a unique user experience with DUI applications.

The DireWolf framework also provides features for distributing and migrating widgets, while

hiding the complexity of device awareness, inter-widget communication and session mobility.

As the performance evaluation indicated, the framework adds only a small overhead to the

overall widget rendering process. The DireWolf framework paves the way for many interesting

experiments. Our user studies confirmed the assumptions that users have certain preferences

for widget/device combinations which are influenced by the performance factor and task

specificity. We tested additional interaction modalities within the semantic video annotation

application illustrated in Figure 1, which confirmed the usefulness of the DUI approach for

complex Web applications.

220 DireWolf Framework for Widget-based Distributed User Interfaces

We envision our framework in the domains of technology-enhanced learning, smart TV

and public display interaction. On system level, Section 5.1 sketches our ongoing work on

integrating the emerging WebRTC API for near real-time browser-to-browser communication.

This will eliminate the need of an intermediary messaging server and will address security and

privacy issues in message exchange across devices and users. To underline our efforts to build

standard-based solutions and extend existing standards where needed, we have submitted an

XMPP extension that has since reached experimental status. On design level, we are taking

additional steps towards enhancing the overall user experience. For instance, we are going to

apply responsive Web design principles to overcome usability issues with widget rendering on

heterogeneous mobile devices, identified during the evaluation sessions. One further potential

enhancement is to implement a more natural, gesture-based shifting of widgets across devices.

On conceptual level, we will extend DireWolf to support multi-device multi-user collaboration,

as a next step beyond the personal multi-device distributed computing environment. We also

plan to investigate what combinations of devices and widget types would be the most relevant

for distribution.

Acknowledgements

The research leading to these results has received funding from the European Commission’s

Seventh Framework Programme (FP7/2007-2013) under grant agreements no 231396 - Re-

sponsive Open Learning Environments (ROLE) project and no 318209 - Learning Layers:

Scaling up Technologies for Informal Learning in SME Clusters and the Excellence Initiative

of German National Science Foundation (DFG) within the research cluster Ultra High-Speed

Mobile Information and Communication (UMIC). We thank Ke Li for his framework imple-

mentation.

References

1. J. J. Lòpez-Espin, J. A. Gallud, E. Lazcorreta, A. Peñalver, and F. Botella. A Formal View of
Distributed User Interfaces. In Proceedings of the Distributed User Interfaces CHI 2011 Workshop,
pages 97–100, Vancouver, BC, Canada, 2011. University of Castilla-La Mancha, Spain.

2. C. Vandervelpen, G. Vanderhulst, K. Kris Luyten, and K. Coninx. Light-Weight Distributed
Web Interfaces: Preparing the Web for Heterogeneous Environments. In Proceedings of the 5th
International Conference on Web Engineering, volume 3579 of LNCS, pages 197–202, Sydney,
Australia, 2005. Springer-Verlag Berlin.

3. M. Blumendorf, D. Roscher, and S. Albayrak. Distributed User Interfaces for Smart Environ-
ments: Characteristics and Challenges. In Proceedings of the Distributed User Interfaces CHI
2011 Workshop, pages 25–28, Vancouver, BC, Canada, 2011. University of Castilla-La Mancha,
Spain.

4. J. Vanderdonckt. Distributed User Interfaces: How to Distribute User Interface Elements Across
Users, Platforms, and Environments. In Proceedings of the XI Congreso Internacional Interacción
Persona-Ordenador, INTERACCIÓN 2010, pages 20–32, Valencia, Spain, 2010. ACM.

5. E. Bogdanov, C. Salzmann, and D. Gillet. Contextual Spaces with Functional Skins as OpenSocial
Extension. In Proceedings of the Fourth International Conference on Advances in Computer-
Human Interactions (ACHI 2011), pages 158–163, Gosier, Guadeloupe, France, 2011.

6. F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, and L. Yan. Distributed Orchestration of
User Interfaces. Information Systems, 37(6):539–556, 2012.

7. G. Ghiani, F. Paternò, and C. Santoro. On-demand Cross-Device Interface Components Migration.

D. Kovachev, D. Renzel, P. Nicolaescu, I. Koren, and R. Klamma 221

In Proceedings of the 12th International Conference on Human Computer Interaction with Mobile
Devices and Services (MobileHCI ’10), pages 299–308, Lisabon, Portugal, 2010. ACM Press.

8. L. Baillie, R. Schatz, R. Simon, H. Anegg, F. Wegscheider, G. Niklfeld, and A. Gassner. Designing
Mona: User Interactions with Multimodal Mobile Applications. In Proceedings of 11th Interna-
tional Conference on Human-Computer Interaction (HCI International), pages 22–27, Las Vegas,
NV, USA, 2005. Lawrence Erlbaum Associates.

9. K. Luyten and K. Coninx. Distributed User Interface Elements to support Smart Interaction
Spaces. In Proceedings of the Seventh IEEE International Symposium on Multimedia, ISM ’05,
pages 277–286, Irvine, CA, USA, 2005. IEEE Computer Society.

10. P. G. Villanueva, R. Tesoriero, and J. A. Gallud. Proxywork: Distributing User Interface Compo-
nents of Web Applications. In Proceedings of the 3rd Workshop on Distributed User Interfaces:
Models, Methods and Tools, DUI 2013 in conjunction with EICS 2013 Conference, pages 58–61,
London, UK, 2013.

11. J. Melchior, D. Grolaux, J. Vanderdonckt, and P. van Roy. A Toolkit for Peer-to-peer Distributed
User Interfaces: Concepts, Implementation, and Applications. In Proceedings of the 1st ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pages 69–78, Pittsburgh,
PA, USA, 2009. ACM Press.

12. C. Jennings, T. Hardie, and M. Westerlund. Real-time communications for the Web. IEEE
Communications Magazine, 51(4):20–26, 2013.

13. A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan. WebRTC 1.0: Real-time Commu-
nication Between Browsers. Working draft, W3C, 2013.

14. H.-H. Chu, H. Song, C. Wong, S. Kurakake, and M. Katagiri. Roam, a Seamless Application
Framework. Journal of Systems and Software, 69(3):209–226, 2004.

15. A. Alapetite. Dynamic 2D-barcodes for Multi-Device Web Session Migration Including Mobile
Phones. Personal Ubiquitous Computing, 14(1):45–52, 2010.

16. F. Paternò, C. Santoro, and A. Scorcia. User Interface Migration Between Mobile Devices and
Digital TV. In Proceedings of the 2nd Conference on Human-Centered Software Engineering
and 7th International Workshop on Task Models and Diagrams, pages 287–292, Pisa, Italy, 2008.
Springer-Verlag Berlin.

17. B. A. Myers. Using Handhelds and PCs Together. Communications of the ACM, 44(11):34–41,
2001.

18. F. Daniel, S. Soi, S. Tranquillini, F. Casati, H. Chang, and Y. Li. MarcoFlow: Modeling, Deploying,
and Running Distributed User Interface Orchestrations. In Proceedings of the 8th International
Conference on Business Process Management Demo Track, BPM 2010, pages 23–27, Hoboken,
NJ, USA, 2010. Springer.

19. J. S. Pierce and J. Nichols. An Infrastructure for Extending Applications’ User Experiences Across
Multiple Personal Devices. In Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08), pages 101–110, Monterey, CA, USA, 2008. ACM Press.

20. S. Wilson, F. Daniel, U. Jugel, and S. Soi. Orchestrated User Interface Mashups Using W3C Wid-
gets. In Proceedings of the 11th International Conference on Current Trends in Web Engineering,
ICWE’11, pages 49–61, Paphos, Cyprus, 2011. Springer-Verlag.

21. S. Govaerts, K. Verbert, D. Dahrendorf, C. Ullrich, M. Schmidt, M. Werkle, A. Chatterjee, A. Nuss-
baumer, D. Renzel, M. Scheffel, M. Friedrich, J. L. Santos, E. Duval, and E. L.-C. Law. Towards
Responsive Open Learning Environments: the ROLE Interoperability Framework. In Proceedings
of the 6th European Conference on Technology Enhanced Learning: Towards Ubiquitous Learning,
EC-TEL’11, pages 125–138, Palermo, Italy, 2011. Springer-Verlag.

22. OpenSocial and Gadgets Specification Group. OpenSocial Specification 2.5.0. http://opensocial-
resources.googlecode.com/svn/spec/2.5/. Online: last accessed March 2013.

23. P. Saint-Andre. RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Mes-
saging and Presence. Technical report, XMPP Standards Foundation, 2011.

24. I. Hickson. HTML5 Web Messaging. Working draft, W3C, 2011.
25. P. Millard, P. Saint-Andre, and R. Meijer. XEP-0060: Publish-Subscribe Version 1.13, Draft.

222 DireWolf Framework for Widget-based Distributed User Interfaces

Technical report, XMPP Standards Foundation, 2010.
26. I. Hickson. The WebSocket API. Editor’s draft, W3C, 2013.
27. Y. Cao, D. Renzel, M. Jarke, R. Klamma, M. Lottko, G. Toubekis, and M. Jansen. Well-Balanced

Usability and Annotation Complexity in Interactive Video Semantization. In Proceedings of the
4th International Conference on Multimedia and Ubiquitous Engineering (MUE 2010), pages 1–8,
Cebu, Philippines, 2010. IEEE.

