
A Link Generator for Increasing the Utility of
OpenAPI-to-GraphQL Translations

Dominik Adam Kus, István Koren, Ralf Klamma
RWTH Aachen University

Aachen, Germany
kus,koren,klamma@dbis.rwth-aachen.de

ABSTRACT
Standardized interfaces are the connecting link of today’s distributed
systems, facilitating access to data services in the cloud. REST APIs
have been prevalent over the last years, despite several issues like
over- and underfetching of resources. GraphQL enjoys rapid adop-
tion, resolving these problems by using statically typed queries.
However, the redevelopment of services to the new paradigm is
costly. Therefore, several approaches for the successive migration
from REST to GraphQL have been proposed, many leveraging Ope-
nAPI service descriptions. In this article, we present the findings of
our empirical evaluation on the APIs.guru directory and identify
several schema translation challenges. These include less expressive
schema types in GraphQL, as well as missing meta information
about related resources in OpenAPI. To this end, we developed the
open source Link Generator, that analyzes OpenAPI documents and
automatically adds links to increase translation utility. This funda-
mentally benefits around 34% of APIs in the APIs.guru directory.
Our findings and tool support contribute to the ongoing discus-
sion about the migration of REST APIs to GraphQL, and provide
developers with valuable insights into common pitfalls, to reduce
friction during API transformation.

KEYWORDS
Web APIs, GraphQL, OpenAPI, REST

1 INTRODUCTION
The modern web is powered by APIs. They enable all kinds of
distributed applications, like web and mobile apps connecting to
microservice architectures. Prominent examples are cloud-oriented
data processing frameworks running on the AWS Cloud or the
Google Cloud Platform, and the orchestration of container appli-
cations with Kubernetes. Since its proposal in the year 2000, the
REST API style [5] has become the most used interface type on
the web. However, there are some shortcomings of REST-based
interfaces. In particular, over- and underfetching are common prob-
lems when designing such an interface [10]. Overfetching occurs
when a client needs a specific piece of information but that informa-
tion is only available from the API in conjunction with additional
data. The client has to fetch more data than it actually needs. The
opposite is true for underfetching: the client has to perform mul-
tiple requests against the interface to fetch all the information it

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 published under Creative Commons CC-BY 4.0 License.

requires. This can lead to increased bandwidth usage and higher
latency for the client, limiting the applications’s performance and
degrading the user experience. Additionally, complex queries are
particularly detrimental for data science in the context of high vol-
ume Internet of Things data, for instance in Industry 4.0 settings.
To tackle the shortcomings of REST, many new API-related tech-
nologies are currently being discussed. One of those technologies
is the modern web API style GraphQL. After its release in 2015, it
quickly gained popularity among developers and is used for many
public APIs as of today. Among others, GitHub and Facebook are
using GraphQL to provide their services. One reason for GraphQL’s
quick success is its promise to solve the above mentioned issues
encountered when using REST APIs. This is enabled by its query
language which allows developers to write statically typed queries,
thereby enabling clients to fetch complex data in a single request
while also providing a high degree of granularity. Together with
being very developer-friendly, those properties make GraphQL
highly interesting to providers of web services, in particular with
mobile frontends. As it can be very time consuming to migrate
an existing REST interface to GraphQL or to maintain interfaces
of both styles at the same time, there is a need for tools that can
aid this transition. One of those tools is the open-source project
OpenAPI-to-GraphQL1 introduced by Wittern et al. [9]. It automat-
ically generates GraphQL wrappers and a corresponding schema
for existing REST APIs, based on their OpenAPI documentation.
Such a wrapper translates incoming GraphQL requests to the corre-
sponding REST calls, issues those calls and assembles the responses
into a valid GraphQL response. Thereby, it acts as a middleman
between the GraphQL client and the existing REST interface. As
a result, a wrapper works on top of an existing interface and does
not required changes of the underlying application.

In this article, we discuss challenges that arise when creating a
GraphQL wrapper, in particular using OpenAPI-to-GraphQL. As
the quality of the generated wrapper heavily depends on the source
documentation, we statistically evaluate real-world API documen-
tations in the public APIs.guru directory regarding their suitability
for wrapper generation. Finally, we introduce our link generator
tool that aims to those documentations and therefore improve the
wrapper generation process.

The article is organized as follows. In the next section, we in-
troduce related work in the area of API migration. Section 3 then
discusses schema translation challenges found in an empirical study.
Section 4 presents the implementation of the Link Generator. Fi-
nally, Section 5 wraps up the article.

1https://github.com/IBM/openapi-to-graphql

ar
X

iv
:2

00
5.

08
70

8v
1 

 [
cs

.D
C

] 
 1

8 
M

ay
 2

02
0

https://github.com/IBM/openapi-to-graphql
This is the authors' preprint version of the paper submitted to Developer Track, The Web Conference 2020, Virtual.
© 2020



WWW ’20, April 20–24, 2020, Taipei, Taiwan Developers Track

2 RELATEDWORK
Regarding the benefits GraphQL offers over REST, a case study
conducted in [1] found a 99% reduction in the size of a query result
in themedianwhen switching toGraphQL. Aside fromperformance,
the example in [4] shows that GraphQL also has the potential to
provide an outward data model that is similar to the internally
used data model. Furthermore, it enables fluid API development
without the need for explicit versioning while still maintaining
compatibility.

The concept of GraphQL wrappers as well as an implementation
example on the client side is presented in [6]. However, the wrap-
per is manually implemented in this example. A tool for automatic
wrapper generation is Swagger2GraphQL2. It takes the Swagger
2.0 documentation of a REST interface as inputs and wraps the
API automatically. The tool OpenAPI-to-GraphQL which was intro-
duces by Wittern et al. [9] works in a similar fashion but uses the
more recent OpenAPI 3.0 format as input. Therefore, it can leverage
new features of the most recent OpenAPI version to enhance the
generated GraphQL schema. One of those is the link definition
feature discussed in this article.

3 SCHEMA TRANSLATION CHALLENGES
The first step to generate such a wrapper is translating the schema
of the REST API into a GraphQL schema. The schema determines
the data model of the generated interface and therefore impacts
the developer friendliness and usability of it. However, the quality
of the generated schema depends heavily on the source OpenAPI
documentation. To assess the influence of the source documentation
on the generated wrapper, we performed an empirical evaluation of
over 1500 of such documents found in the APIs.guru3 directory. In
our analysis, we derived several translation challenges, particularly
when using OpenAPI-to-GraphQL4.

First, OpenAPI canmodel multiple different response types based
on a HTTP success status code (200–299). This has no direct equiv-
alent in GraphQL. In such a case, OpenAPI-to-GraphQL displays
a warning and translates only the numerically smallest defined
status code, ignoring the others. As a consequence, the generated
wrapper may be missing some of the functionality of the original
interface. Around 26% of APIs contain an at least one endpoint
affected by this limitation. Second, we compared the expression
of data format descriptions in OpenAPI and GraphQL and found
several specific properties in OpenAPI that cannot be expressed in
a GraphQL schema, like patterns. OpenAPI schema definitions are
based on the JSON Schema specification which allows narrowing
down allowed values for data types [8]. For example, they allow to
define that a string has to be of a certain form using a pattern. The
GraphQL schema language, however, does not contain an equiva-
lent mechanism. In total, we found that there are 16 such OpenAPI
schema object properties with no direct GraphQL equivalent. Thus,
creating a wrapper for APIs using those properties will inevitably
result in a loss of schema information. An overview of those prop-
erties together with their prevalence in documentations found in
the APIs.guru directory can be found in Table 1. While some of

2https://github.com/yarax/swagger-to-graphql
3https://github.com/APIs-guru/openapi-directory
4OpenAPI-to-GraphQL version 2.0 was used during testing.

those properties, namely oneOf, anyOf and not, are already being
handled by OpenAPI-to-GraphQL at the time of writing, translating
the others to GraphQL remains an open challenge. In total, about
33% of the documents include at least one of those properties.

Third, missing link definitions in OpenAPI are a major pain point.
They allow defining inter-relationships between various resources,
which are reflected in the translated GraphQL schema. As a result,
the added fields increase the readability and intuitiveness of the
schema. In some cases, especially when fetching a list of objects, it
can even increase the amount of data that can be fetched in a single
server roundtrip. An example for the improvement achieved by
adding link definitions is shown in Figure 1 using GitHub’s v3 API.
It shows a query that fetches a repository and its list of branches
from the wrapper generated by OpenAPI-to-GraphQL with and
without using the link generator. When links are added, a reposi-
tory and its list of branches are no longer unrelated in the GraphQL
API. As a result, querying them is no longer done through two
distinct top-level fields. Instead, the branches become a property
of their repository. This is much more intuitive as conceptually,
the branches are specific for the repository which is now reflected
in the API schema. Furthermore, it is no longer necessary for the
client to specify the same parameters owner and repo twice in the
query. This is more concise and also eliminates a potential source
of errors. The example shows that adding links to an OpenAPI
document can significantly improve the quality of the wrapper
generated by OpenAPI-to-GraphQL. However, despite their high
importance for the translation to GraphQL, we could only find link
definitions in 3 out of the over 1500 documents in the APIs.guru
directory. We see one reason for that in the current low adoption
rate of OpenAPI 3.0. As link definitions were first introduced with
version 3 of the OpenAPI specification, documents using previous
versions are inevitably missing link definitions. To combat their low
prevalence, we created OpenAPI-Link-Generator to greatly improve
generated GraphQL wrappers. It automatically adds link definitions
to OpenAPI documents whenever possible based on several heuris-
tics. In the process, it converts OpenAPI documents to version 3, if
necessary.

4 OPENAPI-LINK-GENERATOR
OpenAPI-Link-Generator was created to improve the quality of
the transition to GraphQL. To do that, it enables users to leverage
the existing support for link definitions in OpenAPI-to-GraphQL
without the need to manually go through the tedious process of
adding links to existing API documentation. As such, it can be used
in a pre-processing step before applying OpenAPI-to-GraphQL
to improve the translation result. It is developed as open source
software within our GitHub organization5. The link generator is
available as a freely accessible web service6 and as a Node.js library
distributed through npm7 which also includes a command line tool.
Figure 2 shows a screenshot of the web application. It provides
three input possibilities. First, the raw text can be pasted in. Second,
an OpenAPI file can be chosen from the local file system. Third,
a URL can be pasted it that links to a specification file. After the

5https://github.com/rwth-acis/openapi-link-generator
6https://openapi-link-generator.herokuapp.com
7https://www.npmjs.com/package/openapi-link-generator

https://github.com/yarax/swagger-to-graphql
https://github.com/APIs-guru/openapi-directory
https://github.com/rwth-acis/openapi-link-generator
https://openapi-link-generator.herokuapp.com
https://www.npmjs.com/package/openapi-link-generator


A Link Generator for Increasing the Utility of OpenAPI-to-GraphQL Translations WWW ’20, April 20–24, 2020, Taipei, Taiwan

Property Documents Meaning
Count Ratio

multipleOf 1 0.1% Enforces that a number is a multiple of a given number.

minimum 287 18.3% Enforces that a number is within a given range.maximum 241 15.3%

exclusiveMinimum 1 0.1% Specifies whether the range is including or excluding the given minimum or maximum respectively.exclusiveMaximum 1 0.1%

minLength 326 20.8% Enforces that a string has a length within a given range.maxLength 327 20.8%

pattern 329 20.9% Enforces that a string matches a given pattern.

minItems 110 7.0% Enforces that an array must have a number of items within a given range.maxItems 111 7.1%

uniqueItems 12 0.8% Enforces that an array contains no duplicate items.

minProperties 29 1.8% Enforces that an object must have a number of properties within a given range.maxProperties 39 2.5%

oneOf 7 0.4% Requires an object to adhere to exactly one or at least one schema within an array of schemas respectively.anyOf 2 0.1%

not 0 0.0% Enforces that given data must not adhere to a given schema.

Table 1: OpenAPI schema object properties with no direct equivalent in GraphQL and their prevalence on APIs.guru.

(a) Without link generator

1 {
2 repos(owner: "o", repo: "r") {
3 name
4 }
5 reposBranches(owner: "o", repo: "r") {
6 name
7 }
8 }

(b) With link generator

1 {
2 repos(owner: "o", repo: "r") {
3 name
4 branches {
5 name
6 }
7 }
8 }

Figure 1: Querying a repository and its branches from the GraphQL wrapper generated by running OpenAPI-to-GraphQL on
the GitHub API with and without using the link generator.

link generation process, we show the diff and some statistics on the
number of generated links.

It is noteworthy that we currently only consider HTTP GET
requests for adding links. For simplicity, we therefore use OpenAPI
paths and the GET operation defined on that path synonymously in
the following. As there is no universal rule where a link should be
added to an OpenAPI document and where not, the link generator
has to rely on heuristics to add links. Themost important heuristic is
the assumption that the forward slash in a URI implies a hierarchical
relationship. This is a general rule of REST API design according
to Massé [7] and should therefore hold for most APIs. Based on
this assumption, the link generator tries to add links for each pair
of paths of the form /A and /A/B where A and B may be arbitrary
URI parts. After such a path pair is identified, it is necessary to
compare the parameters defined for those two paths. Here, another
heuristic is used. If both operations contain a parameter with the
same name as well as an identical schema, we assume that those two
parameters have the same semantic meaning. In this case, the link
generator adds a parameter mapping for those two parameters to

the generated link. This is required to prevent the user from having
to redefine the same parameters multiple times when fetching
nested data. Note that for this functionality, the link generator also
parses internal references in the OpenAPI document according to
the specification [2, 3, 8].

To evaluate the link generator, we ran it on the OpenAPI docu-
mentations found in the APIs.guru dataset. In total, it added over
7500 link definitions, affecting about 34% of the documents. One
prominent example for the improvement achieved by the link gen-
erator is shown in Figure 1 and is discussed in Section 3. We are
convinced that our tool is a valuable addition to the growing ecosys-
tem of web API tooling, enabling a more sustainable translation
from OpenAPI to GraphQL.

5 CONCLUSION
GraphQL is one of the most promising new API styles, rapidly
gaining popularity and market share. It provides benefits for de-
velopers and providers alike and consequentially is appealing to



WWW ’20, April 20–24, 2020, Taipei, Taiwan Developers Track

Figure 2: Screenshot of the OpenAPI-Link-Generator web service.

many providers of REST APIs. The open-source tool OpenAPI-to-
GraphQL can be used to automatically generate a GraphQL API
from an existing REST interface by creating a wrapper based on
its OpenAPI documentation. However, missing link definitions in
OpenAPI documents limit the quality of the generated wrapper.
To tackle this problem, we proposed the OpenAPI-Link-Generator
tool. It can be used to automatically add link definitions to existing
OpenAPI documentations and thereby improve the outcome of a
GraphQL migration. The tool is available through npm8 as a nodejs
module and as a command line tool. Furthermore, we provide a
web-based tool9 that can apply the link generator to any OpenAPI
document at the click of a button.

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy – EXC-
2023 Internet of Production – 390621612.

REFERENCES
[1] Gleison Brito, Thais Mombach, and Marco Tulio Valente. 24.02.2019 - 27.02.2019.

Migrating to GraphQL: A Practical Assessment. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
140–150. https://doi.org/10.1109/SANER.2019.8667986

[2] Paul C. Bryan and Kris Zyp. 2012. JSON Pointer: draft-ietf-appsawg-json-pointer-
04. https://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-04

[3] Paul C. Bryan and Kris Zyp. 2012. JSON Reference: draft-pbryan-zyp-json-ref-03.
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03

[4] Mike Bryant. 12/11/2017 - 12/14/2017. GraphQL for archival metadata: An
overview of the EHRI GraphQL API. In 2017 IEEE International Conference on Big
Data (Big Data). IEEE, 2225–2230. https://doi.org/10.1109/BigData.2017.8258173

[5] Roy T. Fielding. 2000. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral Dissertation. University of California, Irvine, Irvine, CA,
USA. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

8https://www.npmjs.com/package/openapi-link-generator
9https://openapi-link-generator.herokuapp.com

[6] Steven Luscher. 2016. Wrapping a REST API in GraphQL. https://graphql.org/
blog/rest-api-graphql-wrapper/

[7] Mark Massé. 2012. REST API design rulebook. O’Reilly, Farnham.
[8] OpenAPI Initiative. 2018. The OpenAPI Specification: Version 3.0.2. https:

//www.openapis.org
[9] Erik Wittern, Alan Cha, and Jim A. Laredo. 2018. Generating GraphQL-Wrappers

for REST(-like) APIs. In Web Engineering (Lecture Notes in Computer Science),
Tommi Mikkonen, Ralf Klamma, and Juan Hernández (Eds.), Vol. 10845. Springer
International Publishing, Cham, 65–83. https://doi.org/10.1007/978-3-319-91662-
0_5

[10] Uwe Zdun, Erik Wittern, and Philipp Leitner. 2020. Emerging Trends, Challenges,
and Experiences in DevOps and Microservice APIs. IEEE Softw 37, 1 (2020), 87–91.
https://doi.org/10.1109/MS.2019.2947982

https://doi.org/10.1109/SANER.2019.8667986
https://tools.ietf.org/html/draft-ietf-appsawg-json-pointer-04
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
https://doi.org/10.1109/BigData.2017.8258173
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.npmjs.com/package/openapi-link-generator
https://openapi-link-generator.herokuapp.com
https://graphql.org/blog/rest-api-graphql-wrapper/
https://graphql.org/blog/rest-api-graphql-wrapper/
https://www.openapis.org
https://www.openapis.org
https://doi.org/10.1007/978-3-319-91662-0_5
https://doi.org/10.1007/978-3-319-91662-0_5
https://doi.org/10.1109/MS.2019.2947982

	Abstract
	1 Introduction
	2 Related Work
	3 Schema Translation Challenges
	4 OpenAPI-Link-Generator
	5 Conclusion
	Acknowledgments
	References



