
Distributed Software Engineering in
Collaborative Research Projects

Michael Derntl, Dominik Renzel, Petru Nicolaescu, István Koren, Ralf Klamma
RWTH Aachen University

Advanced Community Information Systems (ACIS)

Informatik 5, Ahornstr. 55, 52056 Aachen, Germany

Email: lastname@dbis.rwth-aachen.de

Abstract—Collaborative research projects involve distributed
construction of software prototypes as part of the project method-
ology. A major challenge thereby is the need to establish a
developer community that shall effectively and efficiently align
development efforts with requirements offered by researchers
and other stakeholders. These projects are inherently different in
nature compared to commercial software projects. The literature
offers little research on this aspect of software engineering.
In this paper, we outline the challenges in this context and
present a methodology for distributed software engineering in
collaborative research projects. The methodology covers all major
aspects of the software engineering process including require-
ments engineering, architecture, issue tracking, and social aspects
of developer community building in collaborative projects. The
methodology can be tailored to different project contexts and
may provide support in planning software engineering work in
future projects.

Keywords—Distributed software engineering, Collaborative re-
search projects, Open source software, Requirements engineering,
Development infrastructure, Continuous integration, Methodology

I. INTRODUCTION AND MOTIVATION

Over the past eight years, the European Commission has
spent up to 1.5 billion Euros annually on funding collaborative
research and innovation in Information and Communication
Technologies under the umbrella of the Seventh Framework
Programme for Research (FP7) [1]. Likewise, the National
Science Foundation (NSF) has requested almost one billion
US Dollars for the the CISE (Computer & Information Science
& Engineering) program alone for fiscal year 2016 [2]. These
figures demonstrate that massive amounts of public funds are
spent on research projects with an information technology (IT)
focus. One key activity in such projects, whether explicit or
not, is software engineering. It may serve different purposes in
different projects, e.g. producing prototypes for innovative IT
applications or provision of computing infrastructure. Regard-
less of the purpose, spending the available funds effectively
and efficiently can be challenging.

Research projects in science and engineering have thus be-
come a topic of rising interest in software engineering research
lately [3]. There is awareness that the use of sound software en-
gineering methods and principles is pivotal in producing soft-
ware that can be used and maintained for scientific purposes
as well as for driving innovation. Yet, many people involved in
software development processes in science lack formal training
in software engineering, and software engineering in research
projects comes with inherently different characteristics com-
pared to, for instance, software engineering in commercial IT

projects [3]. While commercial IT projects ultimately strive
for financial success and customer satisfaction, which are
both easily measurable, research projects strive for scientific
success in terms of reputation and impact through high-profile
publications in prestigious outlets. In research projects the pro-
duced software is often simply an instrument that is required
to conduct research. Therefore, software artifacts output by
research projects are often prototypes—regarded as boundary
objects of innovative technology and scenarios [4], [5]—which
typically cannot benefit from a well staffed work force to
reach the maturity of commercial products. Also these software
artifacts are not necessarily part of the promised project
output. Moreover, although research projects typically follow
agreed scientific methodologies, each is unique, aiming to
explore and discover unknown territory from the baseline. Such
“once-only projects” expose a significant risk of failing [6].
Hence, measures have to be taken to establish effective and
efficient software engineering practice and ensure the quality
and sustainability of the software outputs.

Fueled by the rise of Web based information and com-
munication technologies (ICT), the internationalization and
distribution of teams and workers in research and development
has increased tremendously in the last two decades. This has
led to challenges related to increasing costs, increased travel
frequency, uncertainty, cultural issues, management challenges
and the need for improved coordination tools in software
engineering [7], [8]. In projects funded under FP7, for instance,
it has been mandatory that different partners from at least three
different countries participate in a collaborative project [9]. In
such projects, which typically have a fixed duration of two
to four years, there are limited time and resources to adopt,
install and apply an agreed development methodology within
the consortium. In the literature there is extensive research into
these distributed, virtual teams in an R&D project context. A
contemporary overview can be found in [10], where the authors
conclude that further research is needed into supporting infras-
tructures for distributed R&D teams, since all teams must find
ways and means for sharing knowledge and managing their
work. It is therefore essential to facilitate development work
with various measures of consortium and stakeholder involve-
ment, including decision making instruments, commitment to
management of the software process, and clear communication
structures (e.g. [11]). The methodology presented in this paper
tries to achieve exactly that. In unfolding the methodology,
we borrow relevant ideas from research on global software
engineering, in particular collaborative development environ-
ments [12] and the tools to support it like version control, issue
trackers, integration, and communication tools [13].

2015 IEEE 10th International Conference on Global Software Engineering

978-1-4799-8409-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ICGSE.2015.12

105

This is the authors' preprint version of the paper appearing in Proceedings of the 2015 IEEE 10th International Conference on Global Software Engineering (ICGSE 2015), Ciudad Real, Spain.
© 2015 IEEE

Another issue of increasing relevance is the licensing of
products created using public funds. Public funding agencies
often endorse the use and development of Open Source Soft-
ware (OSS). For instance, the European Commission sees
the open source development model as a “very effective
way to collaboratively develop software with fast take-up and
improvement cycles, [. . .] a vehicle for the dissemination of
results of ICT research projects” [14]. The methodology in this
paper relies heavily on the open source development model.

To preserve and spread good practice in this context
we present successful solutions deployed and refined over
the last years in the form of a methodology that can be
reused in other research projects with comparable scope and
challenges. The paper focuses on collaborative projects that
involve distributed partners and require distributed develop-
ment, integration, deployment and management of software
based on state-of-the-art research and technologies, end-user
involvement, and informed decision making. Examples include
research projects that build innovative integrated information
systems, or ones that build a common middleware layer for
scientific applications—see [15] for an example. The roots
of the insights presented in this paper lie in the technical
leadership of two inherently different, large-scale research
projects in FP7’s thematic area “information and communica-
tion technologies," namely ROLE [http://role-project.org] and
Layers [http://learning-layers.eu], which are presented in more
detail later on. While in ROLE the task was to develop and
deploy a platform for responsive open learning environments
supporting self-regulated learning [16], the challenge in Layers
has been to facilitate the development and fast deployment
of a scalable, flexible infrastructure for mobile social apps at
the workplace [5]. There is negligible overlap in functional
requirements in these two projects, yet both exposed a con-
siderable number of common challenges and non-functional
requirements related to the software architecture and the engi-
neering & integration processes. We argue that many of these
challenges are highly relevant to large-scale research projects
that involve distributed software development.

II. CONTEXT AND CHALLENGES

A. Empirical Project Context

The empirical context underlying this paper stems from
two large scale integrated projects funded by the European
Commission under the ICT work programme in FP7. Both
projects were collaborative projects, with ambitious goals and
a large consortium of partners, requiring dozens of people
with different backgrounds and affiliations to collaboratively
perform cutting edge research and development. The basic
facts of these two projects are outlined below.

ROLE Project. Responsive Open Learning Environments
(ROLE) was a large scale integrated project running from
2009 to 2013. Sixteen partners from Europe and China were
part of the consortium, and the total budget amounted to
roughly 8.5 million Euros, of which a considerable share
was spent on software engineering related activities. The core
work packages are R&D activities developing a widget-based
platform for self-regulated informal learning in personal and
group learning environments. The authors’ department was
technical coordinator of the project, responsible for the com-
plete software lifecycle. While all partners participated in the

software engineering process in various roles, more than half
of the partners were technical partners participating in active
OSS development. Other partners were primarily focused on
theoretical research, requirements engineering, piloting and
exploitation activities. ROLE did not include a dedicated work
package dealing with the software process, architecture, and
infrastructure.

Layers Project. Layers is a four-year project which was
kicked off in 2012. Eighteen partners are part of the consortium
and the total budget amounts to roughly 12.5 million Euros.
The core work packages are R&D activities developing in-
novative technical infrastructure and software applications for
workplace learning scenarios. All partners participate in the
software engineering process in various roles, and half of all
consortium partners are partners that actively participate in the
production and/or management of computing infrastructure,
source code, and binaries. The other partners are primarily fo-
cusing on research and piloting activities. There is a dedicated
work package dealing with the software process, architecture
and infrastructure in the project, which is being led by the
authors of this paper. In this project several of the instruments
previously deployed in ROLE were adopted and extended.

B. Common Challenges

To set the context of interest for the methodology presented
in this paper, we outline in the following a list of non-
functional challenges for distributed software engineering in
collaborative research projects, drawn from the experiences in
the two projects mentioned above. In the following Section III,
we then show how the presented methodology provides instru-
ments and activities to tackle these challenges.

Decision making. Architectural decisions with considerable
scope need to be made early in the project, and it is well
known that the early mistakes in a project are the costliest [17].
Decisions should thus be made transparently and traceably.

Short cycles. In the time frame of an research project,
development cycles must be kept short, and initial architectures
and prototypes must be provided early to allow for frequent
refinement loops driven by research and end-user involvement.

Impact. Typically, exploitation and impact of project results
are key performance indicators for funding agencies, while in
reality the market-readiness of ICT research project outcomes
is often very limited (e.g. [18]).

Distributed team. The developer community is distributed
across partners, often across borders as well, and needs to
swiftly grow and flourish.

Support tools. The collaborative development environment
and process, including procedures and tools for source code
management, issue tracking, software branding, and similar,
need to be defined and implemented to smoothly align with
the scope and dynamics of the development efforts [13].

OSS Licensing. An OSS strategy usually helps to sustain and
transfer project results into practice and is thus interesting for
funding agencies [14]. In large project consortia, agreement on
one license for all outputs is hard to reach, particularly because
partners often bring in software components that already have
a license attached.

106

Stakeholder commitment. Since there is the danger of a
lack of stakeholder commitment to project activities, software
process instruments need to be highly inclusive and supportive.

Baseline. In research projects, the state of the art builds
the baseline for research and innovation. ‘Quick & dirty’
approaches may thwart ambitions for cutting-edge research.

Unknown territory. Research projects break fresh ground,
so the outcomes remain unspecified beforehand; this poses
challenges for the software engineering activities since these
need to synchronize well with the primary research activities.

Ambitions. Research projects aim at scientific success in
terms of innovation, reputation and impact by high-profile
publications. Conflicting ambitions of collaborating institutions
can pose obstacles for rational and efficient decision making.

III. PROPOSED METHODOLOGY

Meeting the challenges laid out in the previous section
requires a sound methodological basis. The deployed method-
ology relies on three main activity threads, which are described
in the following sub-sections: Convergence (Section III-A),
Stakeholder Engagement (Section III-B), and Software Devel-
opment (Section III-C). An overview matrix pitching instru-
ments of the methodology presented in this section (grouped by
tool-related and people-related instruments) to the challenges
posed in Section II is displayed in Table I. It shows that each
challenge is addressed by multiple instruments, and that each
instrument supports multiple challenges.

TABLE I. CHALLENGES (ROWS) ADDRESSED BY THE INSTRUMENTS

OF THE METHODOLOGY (COLUMNS)

Instruments
Tools People

T
ec

h
n
o
lo

g
y

S
u
rv

ey

R
eq

u
ir

em
en

ts
B

az
aa

r

H
o
u
se

o
f

Q
u
al

it
y

C
o
n
ti
n
u
o
u
s

In
te

g
ra

ti
o
n

Is
su

e
T

ra
ck

in
g

S
o
u
rc

e
C

o
d
e

R
ep

o
si

to
ry

D
ev

el
o
p
er

H
u
b

D
ev

el
o
p
er

T
as

k
F
o
rc

e

A
rc

h
it
ec

tu
re

B
o
ar

d

S
ta

k
eh

o
ld

er
E

n
g
ag

em
en

t

C
ha

lle
ng

es

Decision making � � � � � �
Short cycles � � � � � � �
Impact � � � � � � � �
Distributed team � � � � � �
Support tools � �
OSS licensing � � � � �
Commitment � � � � � � �
Baseline � �
Unknown territory � � � � �
Ambitions � � � � � �

Legend: � support � strong support

A. Convergence Activities and Instruments

Technology Survey. To obtain an overview of relevant ex-
isting technologies, an established activity is to conduct a
desktop search, which we called technology survey. Existing
technologies and options for the present development cycle
are surveyed by the technical partners and documented inter-
nally. This activity tries to ensure that the relevant baseline
approaches and technologies are explored and assessed. In

early cycles this activity will help to remedy challenges related
to architectural decision making. Also, such a survey will help
to reveal whether licensing models of adopted components and
software are compatible with the project’s licensing model.

Requirements Engineering. Diversity of end-user and test-
bed characteristics calls for heavy stakeholder involvement
during all stages of the project. It is well known that require-
ments negotiation and continuous adaptation are central goals
of any information system development endeavor (e.g. [19]).
As a recent survey of requirements engineering tools has
shown [20], most tools cover well the requirements elicitation
and specification aspects, but the survey identified a consid-
erable margin for improvement of requirements management.
As a consequence, non-developers are more likely to avoid
participation in essential requirements engineering tasks. This
dilemma is tackled by Social Requirements Engineering [21]
by employing concepts of social software (e.g. commenting,
voting, communication and sharing artifacts) and combines
them in a portal for end-user communities. In the Requirements
Bazaar [http://requirements-bazaar.org] [21] Web application
end-users may engage in an informal requirements elicitation
process by contributing requirements and enriching them with
user stories and images.

Technology Assessment. Projects need to be able to contin-
uously integrate new components, tools and updates based on
new insights, technological advances, and changing require-
ments. While doing this, it is essential to continuously make
sound architectural decisions informed by the actual needs—
both functional and non-functional—of all stakeholders. A
technique that facilitates this is Quality Function Deployment
(QFD) [22], and the QFD instrument we suggest to adopt for
mapping features and requirements is called House of Quality
(HoQ) [23]. This instrument has been adopted successfully
by many large companies, including Ford, Xerox and AT&T
for their product development activities. The HoQ can be
used to match the list of weighted functional requirements
obtained with features offered by (a subset of) the baseline
technologies that establish the integrated system. This supports
the assessment of existing systems in terms of how well they
perform in meeting user requirements, which finally leads to
informed architectural decisions. One of the main insights
offered by a HoQ is an understanding of the importance of each
feature for project success. For constructing a HoQ, the list of
user requirements from the social requirements engineering
process can be used as a starting point. The most important
part of the HoQ methodology is setting the requirements
in relation with product features, which is achieved using a
number system that directly impacts the resulting software.

B. Stakeholder Engagement

As stated above, large research projects aim to meet the
aims of various stakeholder groups. Put simply, researchers
aspire high-quality publications, developers target an efficient
development process, and application partners wish for soft-
ware that is readily usable in their context. It is therefore an
important task to provide platforms to engage stakeholders
and allow them to communicate with each other. Various
approaches for setting up these platforms can be employed,
amongst them co-design teams consisting of representatives
from end-user partners, researchers, and developers. These are

107

permanent, open work groups within the project that work
on certain design ideas to align the design of the prototypes
with the requirements of the application partners. Their main
concern is to drive technological innovation based on real
problems and authentic scenarios. Since there is often a wide
variety of different ideas, it is of high importance to find the
commonalities and key elements across these ideas. Bringing
together the various feature requests is a major challenge;
assessment instruments like the House of Quality facilitate
this process. A constant dialogue between co-design teams
and developers is maintained by having at least one team
member that is also a representative of the developer task force.
Endeavors of co-design teams can then be directly transferred
to developer task force meetings and vice versa.

C. Software Development

In [7], the authors introduce four principal concepts of
organizing virtual R&D teams ranging from decentralized self-
coordination to centralized venture team with increasing degree
of centralized control. Taking into account the motivational
situation and the management structures at research centers
and universities typically involved in collaborative research
projects, we argue for a blended approach combining decen-
tralized self-coordination for the short- and mid-term agenda,
with a system architecture core team installed to deal with
long-term, high-impact decisions and strategic development
objectives. For the decentralized self-coordination we propose
a developer task force and for the core architecture control we
propose a governing body called architecture board.

Developer Task Force. Splitting the software development
effort in a research project into artificial teams should be
avoided [15]. To facilitate the emergence of a team spirit
with shared ownership the author recommends to build a
single virtual team. In this regard, and in line with our
previous research project experiences, we suggest to establish
a developer task force as an informal community to bundle
developer resources distributed among project partners in a
virtual, loosely coupled team structure. Typically, the devel-
opers in a research project are either professional developers
from participating companies or researchers/PhD students at
research partner institutions. A unified, virtual task force shall
help to sustain a healthy “steady heartbeat” [6] during the
software engineering process in the face of these challenges.
The members can influence decisions such as the software
engineering methods employed (e.g. agile methods, incremen-
tal, iterative, etc.) for the project, development infrastructure,
tools used for continuous integration, issue tracking, code
management and other such collaboration tools. The task force
can be seen as an exploration unit with clear competences,
and it shall be self-managed and given considerable autonomy
for defining and achieving the short- and mid-term objectives.
This will lower the pressure coming from rules and regulations,
which is known to be a failure factor in software projects [6].

Architecture Board. A governing body, which we chose to
label the “architecture board” to reflect its duty of making
and enforcing global decisions, shall be established as an
authority to make binding decisions for all partners. It has been
suggested [15] that an authority should enforce the policies and
be the only one allowed to change policies. The architecture
board will also help to increase stakeholder commitment due to

stronger involvement in decision making. Informed, consensus-
oriented decision making—optimally supported by consulting
instruments like House of Quality—might also increase the
chance of post-project exploitation and impact of results, which
is a key issue of concern for funding agencies.

Developer Hub. In order to sustain the produced software
artifacts beyond the scope of the research project, these should
be developed and released using state-of-the-art practices and
tools from the OSS community [15]. The developer task force
shall therefore set up a developer hub on the Web, acting as
an information center for all developer related resources in the
project targeting internal and external members. This includes,
for instance, apps and nightly builds for download, API docu-
mentation, installation instructions, links to all developer tools,
and so forth. This will also facilitate the establishment and
maintenance of knowledge about project-specific information
items—e.g. technological agreements, process agreements,
build and deployment related information—that are known to
be highly important for satisfying the information needs of
distributed software engineers [24]. Since documentation is a
key feature of the software project landscape [25], a well-
maintained developer hub will also facilitate coping, e.g. with
new developers joining. We propose the following essential
tools for the developer hub:

• Social Requirements Engineering [21]: we recommend
the use of Requirements Bazaar as an open commu-
nity toolkit that allows requirements generation and
prioritization. This is done in a bazaar-like metaphor,
negotiating around requirements using posting of ar-
tifacts, comments, and votes. All co-design activities
in the project use it as a boundary object for sharing
and negotiating requirements with the developer task
force. Once a developer commits to the realization of
a requirement, it is pushed into the issue tracker.

• Issue Tracking: allows the management of software
issues, including bugs, feature requests, etc. Most is-
sue tracking software packages offer more than pure
issue listings. Based on experience we prefer JIRA by
Atlassian, offering free licenses to OSS projects [https:
//www.atlassian.com/opensource]. JIRA is also used by
major OSS organizations such as the Apache Founda-
tion. We deployed a two-way integration of JIRA with
Requirements Bazaar (cf. [26]).

• Source Code Integration: Build-level code integration
tools support and access source code management sys-
tems, e.g. to obtain code for regular integrated builds.
In our projects we prefer the open source solution
Jenkins [http://jenkins-ci.org]. Jenkins can be used to run
automated tests and nightly builds, driven by the source
code repository. Regular builds offer timely notifications
for the people in charge of integration.

• Source Code Repository: In a distributed software en-
gineering process it is key to have a reliable source
code management in place. There are freely available
solutions available. We have chosen to use Git, since it
offers sophisticated support for distributed development
(e.g. full-fledged local repositories) and offers desktop
and Web clients (e.g. GitHub) that integrate well with
most state-of-the-art software management tools.

108

• Documentation: Finally, the developer hub provides
comprehensive documentation of all software and tools
offered and developed in the project.

IV. CONCLUSION

In this paper we have proposed a methodology for soft-
ware engineering in software-intensive, collaborative research
projects. We claimed that these projects often expose common
challenges regarding the software engineering process. We
presented activities and instruments that allow approaching
these challenges with proven tools and established practices
from real-world developer communities. Typical collaborative
research projects involve goals and strategies of researchers,
application partners, and developers. The key to let conver-
gence win over divergence is the set of instruments deployed
to support continuous integration at all levels and in all areas
where stakeholder interests meet. In particular we proposed
the developer hub approach, which acts as a center offering
tools and practices facilitating the developer task force.

While the methodology presented here stems from projects
involving a large number of partners, it appears reasonable
and applicable also for smaller distributed projects. In fact, we
believe that the complexity of the software to be developed
plays a more important role for the necessity of deploying
certain support instruments than the mere size of the developer
community. With a smaller number of partners some people-
related instruments (e.g. the architecture board) should become
simpler to manage. The tool-related instruments (e.g. the
Requirements Bazaar or the issue tracker) will also prove
useful in non-distributed or single-developer projects.

With this contribution we aim to preserve previously and
currently successful practice in a way that allows future project
consortia to plan and execute their software engineering pro-
cesses by tailoring the presented methodology to their needs.
Last but not least we aim to establish a professional culture
of sharing and continued refinement of software engineering
good practices in research projects.

ACKNOWLEDGMENT

This research was supported by the European Commission
in the Seventh Framework Programme project “Layers”, grant
no. 318209. This paper reflects the views only of the authors,
and the Commission cannot be held responsible for any use
which may be made of the information contained therein.

REFERENCES

[1] European Commission, “Budget – FP7 – Research,” http://ec.europa.
eu/research/fp7/index_en.cfm?pg=budget, 2013.

[2] National Science Foundation, “FY 2016 NSF Budget Request to
Congress,” http://www.nsf.gov/about/budget/fy2016/pdf/18_fy2016.pdf,
2015.

[3] J. C. Carver, “First International Workshop on Software Engineering
for Computational Science & Engineering,” Computing in Science &
Engineering, vol. 11, no. 2, pp. 7–11, 2009.

[4] H. Rhinow, E. Koeppen, and C. Meinel, “Prototypes as Boundary
Objects in Innovation Processes,” in Design Research Society 2012:
Bangkok. Conference Proceedings, vol. 4. DRS, 2012, pp. 1581–1590.

[5] T. Ley, J. Cook, S. Dennerlein, M. Kravcik, C. Kunzmann, K. Pata,
J. Purma, J. Sandars, P. Santos, A. Schmidt, M. Al-Smadi, and C. Trat-
tner, “Scaling informal learning at the workplace: A model and four
designs from a large-scale design-based research effort,” British Journal
of Educational Technology, vol. 45, no. 6, pp. 1036–1048, 2014.

[6] H. Huijgens, R. van Solingen, and A. van Deursen, “How to build a
good practice software project portfolio?” in 36th Int. Conf. on Software
Engineering, Companion Proceedings. ACM, 2014, pp. 64–73.

[7] O. Gassmann and M. v. Zedtwitz, “Trends and determinants of manag-
ing virtual R&D teams,” R&D Management, vol. 33, no. 3, pp. 243–262,
2003.

[8] S. Beecham, P. O’Leary, I. Richardson, S. Baker, and J. Noll, “Who
are we doing Global Software Engineering research for?” in Proc. 8th
IEEE Int. Conf. on Global Software Engineering. IEEE, 2013, pp.
41–50.

[9] European Commission, “Regulation (EC) No 1906/2006 of the Euro-
pean Parliament and of the Council. Official Journal of the European
Union, L 391/1.” http://ec.europa.eu/research/participants/data/ref/fp7/
90749/ecrulesforparticipation_en.pdf, 2006.

[10] N. A. Ebrahim, S. Ahmed, and Z. Taha, “Establishing Virtual R&D
Teams: Obliged Policy. CoRR, abs/1208.0994,” http://arxiv.org/abs/
1208.0944, 2012.

[11] H. Berger and P. Beynon-Davies, “The utility of rapid application
development in large-scale, complex projects,” Information Systems
Journal, vol. 19, no. 6, pp. 549–570, 2009.

[12] G. Booch and A. W. Brown, “Collaborative development environments,”
Advances in Computers, vol. 59, pp. 1–27, 2003.

[13] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino, “Collaboration
tools for global software engineering,” IEEE Software, vol. 27, no. 2,
pp. 52–55, 2010.

[14] European Comission, “Free and open source software activities in
European Information Society initiatives,” http://cordis.europa.eu/fp7/
ict/ssai/foss-home_en.html, no date.

[15] P. Kunszt, “Grid Middleware Development in Large International
Projects – Experience and Recommendations,” in Int. Conf. on Software
Engineering Advances. IEEE, 2007, pp. 82–86.

[16] R. Carneiro, P. Lefrere, K. Steffens, and J. Underwood, Eds., Self-
regulated Learning in Technology Enhanced Learning Environments:
A European Perspective. Rotterdam: SensePublishers, 2011.

[17] J. C. Westland, “The cost of errors in software development: evidence
from industry,” The Journal of Systems and Software, vol. 62, no. 1,
pp. 1–9, 2002.

[18] European Comission, “FP6 IST Impact Analysis Study:
Final Report,” http://cordis.europa.eu/fp7/ict/impact/documents/
wing-pilot-fp6-final-report-18-12-09.pdf, 2009.

[19] D. P. Truex, R. Baskerville, and H. Klein, “Growing systems in
emergent organizations,” Communications of the ACM, vol. 42, no. 8,
pp. 117–123, 1999.

[20] J. M. Carillo de Gea, J. Nicolas, J. L. Fernández Alemán, A. Toval,
C. Ebert, and A. Vizcaíno, “Requirements Engineering Tools,” IEEE
Software, vol. 28, no. 4, pp. 86–91, 2010.

[21] E. L.-C. Law, A. Chatterjee, D. Renzel, and R. Klamma, “The
Social Requirements Engineering (SRE) Approach to Developing a
Large-Scale Personal Learning Environment Infrastructure,” in EC-TEL
2012, LNCS 7583, A. Ravenscroft, S. Lindstaedt, C. D. Kloos, and
D. Hernández-Leo, Eds. Springer Verlag, 2012, pp. 194–207.

[22] Y. Akao, Quality Function Deployment: Integrating Customer Require-
ments into Product Design. Cambridge: Productivity Press, 1990.

[23] J. R. Hauser and D. Clausing, “The House of Quality,” Harvard
Business Review, vol. 66, no. 3, pp. 63–73, 1988.

[24] K. Dullemond and B. van Gameren, “What distributed software teams
need to know and when: an empirical study,” in Proc. 8th IEEE Int.
Conf. on Global Software Engineering. IEEE, 2013, pp. 61–70.

[25] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.
de Vries, “Moving into a new software project landscape,” in Proc.
32nd ACM/IEEE Int. Conf. on Software Engineering - Volume 1. ACM,
2010, pp. 275–284.

[26] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke, “Requirements
Bazaar: Social Requirements Engineering for Community-Driven Inno-
vation,” in 21st IEEE Int. Requirements Engineering Conference (RE).
IEEE, 2013, pp. 326–327.

109

