This is the authors' preprint version of the paper appearing in Proceedings of the 2014 European
Conference on Technology Enhanced Learning (EC-TEL 2014), Graz, Austria.
© 2014 Springer

Blueprint for Software Engineering
in Technology Enhanced Learning Projects

Michael Derntl, Istvan Koren, Petru Nicolaescu,
Dominik Renzel and Ralf Klamma

RWTH Aachen University
Advanced Community Information Systems (ACIS)
Lehrstuhl Informatik 5, Ahornstr. 55, 52056 Aachen, Germany
lastname@dbis.rwth-aachen.de

Abstract. Many projects in Technology Enhanced Learning (TEL) aim
to develop novel approaches, models, and systems by field-testing new
ideas with software prototypes. A major challenge is that project con-
sortia need to establish a distributed, typically understaffed developer
community that has to align its development efforts with needs from
application partners and input from research partners. Tackling this
challenge, this paper provides a blueprint for software engineering pro-
cess and infrastructure, which was distilled from successful practices in
recent TEL projects. We present a composition of freely available in-
struments that support open, distributed software engineering practices
using continuous integration processes. The blueprint considers the full
development cycle including requirements engineering, software architec-
ture, issue tracking, build management and social aspects of developer
community building in TEL projects. Some lessons learned are provided,
particularly related to open source commitment, innovation as a social
process, and the essential role of time. We aim to make software devel-
opment in TEL fit for Horizon 2020 with processes and instruments that
can be readily adopted for planning and executing future projects.

1 Introduction and Challenges

In interdisciplinary projects the negotiation of the main outputs and work
processes is key to success. This is particularly true for Technology Enhanced
Learning (TEL) projects, since these projects face the challenge of bridging a
potentially huge gap between learning theories and the enabling technologies [1].
Most R&D projects funded by the TEL unit in FP6 and FP7—most notably spe-
cific targeted research projects and large-scale integrated projects!—have aimed
to develop novel TEL approaches by evaluating and field-testing new ideas with
software prototypes. Since the TEL community is small and tightly connected [2],
it is a natural consequence that the consortia often follow approaches that have
succeeded in previous or similar projects. These might include practices like
rapid prototyping, continuous integration, agile development, and others [3]. As

! For an overview see http://www.learningfrontiers.eu/?q=project_space

C. Rensing et al. (Eds.): EC-TEL 2014, LNCS 8719, pp. 404-409, 2014.
© Springer International Publishing Switzerland 2014



http://www.learningfrontiers.eu/?q=project_space
This is the authors' preprint version of the paper appearing in Proceedings of the 2015 IEEE 10th International Conference on Global Software Engineering (ICGSE 2015), Ciudad Real, Spain.
© 2015 IEEE

This is the authors' preprint version of the paper appearing in Proceedings of the 2015 IEEE 10th International Conference on Global Software Engineering (ICGSE 2015), Ciudad Real, Spain.
© 2015 IEEE

This is the authors' preprint version of the paper appearing in Proceedings of the 2014 European Conference on Technology Enhanced Learning (EC-TEL 2014), Graz, Austria.
© 2014 Springer


Blueprint for Software Engineering 405

a complicating factor, collaborative research projects often face the challenge of
an understaffed, distributed developer community that needs to align develop-
ment efforts with needs from application partners and input from researchers.
To resolve the forces in this area of tension, this paper presents a blueprint for
software engineering in TEL research projects. The paper focuses on large-scale
projects that require deployment and integration of scalable solutions and de-
velopment processes based on available technologies, end-user involvement, and
informed decision making.

The roots of the research presented in this paper lie in the technical leader-
ship in two inherently different large-scale integrated projects in TEL, namely
ROLE? and Layers®. While in ROLE the task was to develop and deploy a
platform for responsive open learning environments supporting self-regulated
learning (e.g., [4]), the challenge in Layers is to develop and deploy scalable,
flexible and rapidly deployable infrastructures for informal learning [5] in two
large SME clusters in the UK (health care) and Germany (construction). There
is negligible overlap in functional requirements in these two projects, yet both
exposed a considerable amount of common challenges and non-functional re-
quirements related to the software architecture as well as the development and
integration processes. Key architectural challenges are the need to make early ar-
chitectural decisions, and to build the basis for flexible, customizable, traceable,
and scalable solutions. Key development and integration challenges include the
distributed developer community, the danger of a lack of stakeholder commit-
ment, swift provision of software engineering infrastructure, and establishment
of development practices.

Many of these challenges will be relevant to other large-scale R&D projects in
TEL and beyond. It is understood that TEL innovation processes need alignment
with research and practice that can build on previous findings [6]. In this spirit,
to preserve and spread effective practices in TEL development we present in
Section 2 successful solutions deployed first in ROLE and then adopted and
refined in Layers in the form of a blueprint for software engineering in TEL to
be reused in other projects that offer comparable scope and challenges. In the
last section we provide lessons learned and conclude the paper.

2 Distilling the Blueprint

The blueprint tackling the challenges presented in the previous section inte-
grates three core perspectives, as explained below and illustrated schematically
in Fig. 1.

2.1 Stakeholder Perspective

Typical collaborative R&D projects involve goals and strategies of researchers,
application partners, and developers. Put provocatively, researchers aim to pub-
lish high-impact papers; application partners want ready-to-use, custom tailored

2 http://role-project.org
3 http://learning-layers.eu


http://role-project.org
http://learning-layers.eu

406 M. Derntl et al.

apps; and the developer force is distributed, understaffed, and members often
pursue PhD research. It is obvious that this perspective will impose a divergent
force upon most projects. To bundle the development capacity we propose to es-
tablish a Developer Taskforce that acts largely autonomously when negotiating
and realizing short- to mid-term development objectives within the development
roadmap framed by researchers, co-design partners, and project management.
This development community may consist of project internal developer groups,
involved student groups—e.g., in project-based learning (PBL) courses offered by
project partners—and external groups like local OSS communities, established
companies and emerging start-ups.

For making decisions with a potentially project-wide effect during the software
engineering process, we propose to establish a governing body (in Layers the
Architecture Board), in which relevant stakeholders are represented, and which
makes binding decisions based on suggestions and input by project partners.

2.2 Continuous Integration Perspective

Integration shall impose a convergent force upon the project. It has several di-
mensions. First, there is the integration with the application partners, which is

)
o
2
Ed
=4
o
=
a

s,
© %
& ‘7/\0
il = 2
& & 3
& Research & Requirements 2,

Themes & Engineering %,
Activities ' &

Co-Design

eg@'(\o“ 00'7?‘/)70
Oos\ﬁ" (Open Source) s 4 )
o Software Development Yot
) t
€VELOPER TASKFOR

Fig. 1. Perspectives, activities and instruments in the software engineering blueprint



Blueprint for Software Engineering 407

expressed in a systematic requirements engineering process. Especially in TEL
projects, requirements engineering methodologies and tools must support an ef-
ficient communication and negotiation among the different stakeholder groups
involved. Traditional requirements engineering techniques involving face-to-face
interaction with end-users are resource-intensive [7], involving traveling costs
and high preparation efforts. Such costs are justifiable in early project stages,
when working processes are not yet established. However, in later project stages,
such costs can be avoided by the use of effective and easy-to-use tools. As an
open requirements platform we adopted Requirements Bazaar (see below). Sec-
ond, there is the server-side integration, which facilitates the offering of unified
services and tools developed in a distributed community. Third, there is the
client-side integration that shall generate integrated end-user tools consuming
common services. In addition there is continuous integration at the source code
level (see below).

Integration efforts shall be driven mainly in Co-Design Teams, which subsume
application partners, designers and developers as a permanent subgroup of the
project working on a particular design challenge or design idea. They develop
usage scenarios, wireframes, mockups, and first prototypes. Also they formulate
demands for the further development of prototypes. Since there is often a wide
variety of different design ideas in a project, it is of high importance to find the
commonalities and key elements across these ideas. The assessment of alternative
solutions shall be facilitated using the House of Quality (HoQ) approach [§],
which pitches requirements against features offered by products to be adopted,
developed and integrated. HoQ originated in Japan in 1972, and it was adopted
during the 1980s by large U.S. companies such as Ford, Xerox and AT&T for
their product development activities. It has proven to be a valuable instrument
also in the Layers R&D context.

To make sure that co-design teamwork aligns with the overall project objec-
tives, we propose to host project-wide Integration Conferences that focus on
integrating the plethora of outputs from the co-design and development threads.
This includes integration of theory, data, services, user interface, development
processes and external tools.

2.3 Instrument Perspective

The key to let convergence win over divergence is the set of instruments deployed
and offered to project partners to support continuous integration at all levels and
in all areas where stakeholder interests meet. In particular we propose the Open
Developer Library (ODevL) approach, which acts as a virtual hub offering tools
and practices facilitating the Developer Taskforce:

— Source Code Repository: In a distributed software engineering process it
is key for developers to have a reliable source code management in place.
There are freely available solutions available. We suggest GitHub?, since it is

4 http://github.com


http://github.com

408 M. Derntl et al.

integrated with other tools and offers sophisticated support for a distributed
development (e.g., full-fledged local repositories).

— Source Code Integration: Build-level code integration tools support and ac-
cess source code management systems, e.g., to obtain code for regular inte-
grated builds. The build process can be tailored to specific needs regarding
the build triggers and the build process itself. In the blueprint we propose the
open source solution Jenkins. Regular builds will offer timely notifications
for those people in charge of integration.

— Issue Tracking: Issue trackers allow the management of software issues, in-
cluding bugs, feature requests, etc. Most issue tracking software packages
offer more than pure issue listings. The proposed system JIRA also offers
project management tools (e.g., a Kanban board [9]), and integrated source
code management tracking. The issue tracker is two-way integrated with the
Requirements Bazaar.

— Requirements Bazaar: An open community toolkit that allows requirements
and ideas generation and prioritization [10]. This is done in a bazaar-like
metaphor, enabling negotiating around requirements using posting of arti-
facts, comments, and votes. This instrument provides a central requirements
hub for all stakeholders in the project.

3 Conclusion and Lessons Learned

In this paper we have unfolded a blueprint for software development in large-
scale R&D projects in TEL. We claimed that these projects often expose common
challenges regarding the software architecture and the development process. We
presented activities and instruments that allow approaching these challenges
with proven tools and established practices in real-world developer communities.

The experiences about the software engineering process reported here are the
synopsis of years of supporting TEL in creating and sustaining results within
and beyond the scope of a funded research project. Some lessons learned include
the insight that even with a good project plan, requirements and priorities of
stakeholders change over time. These changes must be reflected in the process
to avoid contracting the “not-invented-here” syndrome. Also it is advisable to
make a strong commitment towards open source development, and to push the
involvement of external developer communities to support the typically small
project-internal developer force. A related issue which needs to be dealt with
early is the OSS licensing models to be adopted. Also, time is an essential factor.
It is paramount to start very early in providing the development infrastructure
and grow continuously. In that sense, pre-configured development infrastructures
like the blueprint presented in this paper, which can be rapidly deployed for a
new project are a good choice. Last but not least, we emphasize the pivotal role of
social factors in R&D projects; the success of deployed instruments will always
depend on how well resistances can be resolved and how deeply stakeholders
embrace the opportunity provided by such an infrastructure.



Blueprint for Software Engineering 409

The actual resulting architecture was not explained in detail here since it will

have limited general value outside of the Layers project. It is described in detail
in [11]. With this paper we aimed to preserve previously and currently successful
practice in a way that allows future TEL project consortia to plan and execute
their software engineering processes, either as a dedicated work package, or by
picking a subset of the instruments and activities that are tailored to their needs.
We want to establish a culture of sharing and continued refinement of software
engineering best practices in TEL across EU funded projects.

Acknowledgments. This research was co-funded by the European Commission
through the FP7 Integrated Project “Learning Layers” (grant no. 318209).

References

10.

11.

Noss, R.: 21st Century Learning for 21st Century Skills: What Does It Mean, and
How Do We Do It? In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D., Herndndez-Leo,
D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 3-5. Springer, Heidelberg (2012)
Derntl, M., Klamma, R.: The European TEL Projects Community from a Social
Network Analysis Perspective. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D.,
Hernéndez-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 51-64. Springer,
Heidelberg (2012)

Sommerville, I.: Software Engineering, 9th edn. Pearson, Boston (2011)

Carneiro, R., Lefrere, P., Steffens, K., Underwood, J. (eds.): Self-regulated Learn-
ing in Technology Enhanced Learning Environments: A European Perspective.
SensePublishers, Rotterdam (2011)

Ley, T., et al.: Scaling informal learning: An integrative systems view on scaffolding
at the workplace. In: Hernédndez-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.)
EC-TEL 2013. LNCS, vol. 8095, pp. 484-489. Springer, Heidelberg (2013)
Beyond Prototypes consortium: Enabling innovation in technology-enhanced learn-
ing. Final project report (2013), http://is.gd/bpinnovtel

Law, E.L.-C., Chatterjee, A., Renzel, D., Klamma, R.: The Social Require-
ments Engineering (SRE) Approach to Developing a Large-Scale Personal Learn-
ing Environment Infrastructure. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D.,
Hernéndez-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 194-207. Springer,
Heidelberg (2012)

Hauser, J.R., Clausing, D.: The House of Quality. Harvard Business Review 66(3),
63-73 (1988)

Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology
Business. Blue Hole Press (2010)

Renzel, D., Behrendt, M., Klamma, R., Jarke, M.: Requirements Bazaar: Social
Requirements Engineering for Community-Driven Innovation. In: 21st IEEE Inter-
national Requirements Engineering Conference (RE), pp. 326-327. IEEE (2013)
Derntl;, M., Klamma, R., Koren, I., Kravcik, M., Nicolaescu, P., Renzel, D., et
al.: Initial Architecture for Small-Scale Deployment. Learning Layers Deliverable
D6.1(2013), http://is.gd/LayersD61


http://is.gd/bpinnovtel
http://is.gd/LayersD61

	Blueprint for Software Engineering
in Technology Enhanced Learning Projects

	1 Introduction and Challenges
	2 Distilling the Blueprint
	2.1 Stakeholder Perspective
	2.2 Continuous Integration Perspective
	2.3 Instrument Perspective

	3 Conclusion and Lessons Learned
	References




